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RAM is “slow”
 Often programs are slow because the memory is slow  
 Accessing a register is very fast  

 e.g., a 4GHz CPU can update a register in 0.25 
nanosecond (1 cycle)  

 Accessing the memory can take ~50 ns 
 What does the CPU do while it’s waiting for the 

memory to give it data?  

 NOTHING!! (yes, this is a problem) 
 This is the famous “Von-Neumann Bottleneck”  

 Many techniques have been developed to address 
this problem
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The Memory Hierarchy

 We would like a gigantic and fast memory 
 Could we just build the memory just as 

gazillions of registers? 
 No!!! Cost/physics make it impossible 

 Instead, we play a trick to provide the illusion 
of a fast memory 

 This trick is called the memory hierarchy
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The Memory Hierarchy in a Nutshell

 When a program accesses a byte in memory 
 It checks whether the byte is in cache, and if so, it 

just gets it (and puts it in a register) 
 Otherwise, the byte value is brought from the 

(slow) memory into the (fast) cache 
 The values around the byte are also brought into 

the cache  
 This can happen at all levels 

 Each level of the hierarchy serves as a “cache” 
for the level below it



The Memory Hierarchy: Analogy

 To write a paper at your desk at home you need a reference 
book from the library 

 You go to the library and find the book on a shelf, noticing that 
the books around it are on the same topic! You can...  

 Option #1: Leave the book at the library and go to the library each 
time you need one reference 

 Option #2: Take only the one book and reuse it at will... but if it 
makes a reference to another book on the same topic you’ll have to 
go back to the library  

 Option #3: Take the one book and the books around it and put 
them on your desk... and if the reference makes a reference to 
another book, maybe you’ll have the referred book right there 

 Option #3 above is: “your desk is a cache for the library” 
 The set of books you grabbed is called a “cache line” or “memory 

line”



Misses and Hits
 Cache hit:  the processor references an address, 

and the data at that address is in cache 
 The good case 
 You hope for most of your references to be hits 

 Cache miss: the processor references an address, 
and the data at that address is not in cache 
 The bad case, which takes much more time 
 A memory line is brought into the cache 

 The bytes you need and some bytes around it 
 So that next time, all those bytes will be in cache 

 Let’s see this on a picture…
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it, so now we’ll incur another cache miss…



All this Happens in Hardware
 All cache management is done in hardware 
 The OS or the programmer can’t influence how the 

cache works 
 Real hardware is more complex than what we saw in 

the previous slides 
 Several levels of cache (the “hierarchy”) 
 What happens on a write? (update only the cache or both 

the catch and the memory?) 
 Which cache lines should be evicted? 
 What happens with multiple cores? 
 See a Computer Architecture course 

 But regardless, why does it all work?



Locality in your Programs
 The memory hierarchy is useful because of 

“locality” 
 Temporal locality: a memory location that was 

referenced in the past is likely to be referenced 
again 
 If you reference a byte, you’ll reference it again 

soon (think of updating a counter) 
 Spatial locality: a memory location next to one 

that was referenced in the past is likely to be 
referenced in the near future 
 If you reference a byte, you’ll soon reference a 

byte close to it (think of going through an array)



Locality for the developer

 In general, all useful programs have some 
locality 

 But programming for best locality is a well-
known challenge (see ICS432, ICS433, 
ICS621) 

 This means we can write a program with 
horrible locality just to see how bad it is
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Direct Memory Access (DMA)
 Often, one has to copy large chunks of data to/from RAM 

from/to some peripheral device (graphics card, network 
card, sound card, disk)  

 In the pure Von-Neumann model, the CPU has to be 
involved for each copy operation  

 The problem is that memory copies take a long time (even 
with caches), and the CPU spends its life twiddling its 
thumbs while the copies are taking place 

 It would be better to have copies occur independently so 
that the CPU can do something useful while the memory 
copies are taking place 

 This is called Direct Memory Access 
 The “let’s not have the CPU do this” is a common theme



Direct Memory Access (DMA)

 DMA is used on all modern computers  

 e.g., the M1 chip on my laptop has a (pretty 
fancy) DMA controller 

 How DMA works (without getting into details): 
 The CPU simply tells the DMA controller to initiate 

a RAM copy 
 When the copy is complete the DMA controller 

tells the CPU “it’s done” by generating an 
interrupt (more on interrupts very soon) 

 In the meantime, the CPU was free to do 
whatever



Direct Memory Access (DMA)
 To perform data transfers the DMA controller uses 

the memory bus  

 In the meantime, the code executed by the CPU 
likely also uses the memory bus  

 Therefore, they can interfere with each other  

 There are several ways in which this interference can 
be managed (give priority to DMA, to CPU, weight 
usage, ...)  

 See a Computer Architecture course  
 In general, using DMA leads to much better 

performance anyway and (good) software should use 
it as often as possible 



Conclusion

 This concludes are lightning fast review/
overview of computer architecture 

 You don’t need to be computer architecture 
experts for this course 

 But since the OS is in charge of interacting 
with the hardware, you need to know these 
basics 

 And many of the principles behind what we’ve 
talked about in this module are reused in 
software by the OS (and programs in general)


