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RAM is “slow”
 Often programs are slow because the memory is slow 

 Accessing a register is very fast 


 e.g., a 4GHz CPU can update a register in 0.25 
nanosecond (1 cycle) 


 Accessing the memory can take ~50 ns

 What does the CPU do while it’s waiting for the 

memory to give it data? 


 NOTHING!! (yes, this is a problem)

 This is the famous “Von-Neumann Bottleneck” 


 Many techniques have been developed to address 
this problem



RAM is “slow”
 Often programs are slow because the memory is slow 

 Accessing a register is very fast 


 e.g., a 4GHz CPU can update a register in 0.25 
nanosecond (1 cycle) 


 Accessing the memory can take ~50 ns

 What does the CPU do while it’s waiting for the 

memory to give it data? 


 NOTHING!! (yes, this is a problem)

 This is the famous “Von-Neumann Bottleneck” 


 Many techniques have been developed to address 
this problem



The Memory Hierarchy

 We would like a gigantic and fast memory

 Could we just build the memory just as 

gazillions of registers?

 No!!! Cost/physics make it impossible


 Instead, we play a trick to provide the illusion 
of a fast memory


 This trick is called the memory hierarchy
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The Memory Hierarchy in a Nutshell

 When a program accesses a byte in memory

 It checks whether the byte is in cache, and if so, it 

just gets it (and puts it in a register)

 Otherwise, the byte value is brought from the 

(slow) memory into the (fast) cache

 The values around the byte are also brought into 

the cache 

 This can happen at all levels


 Each level of the hierarchy serves as a “cache” 
for the level below it



The Memory Hierarchy: Analogy

 To write a paper at your desk at home you need a reference 
book from the library


 You go to the library and find the book on a shelf, noticing that 
the books around it are on the same topic! You can... 


 Option #1: Leave the book at the library and go to the library each 
time you need one reference


 Option #2: Take only the one book and reuse it at will... but if it 
makes a reference to another book on the same topic you’ll have to 
go back to the library 


 Option #3: Take the one book and the books around it and put 
them on your desk... and if the reference makes a reference to 
another book, maybe you’ll have the referred book right there


 Option #3 above is: “your desk is a cache for the library”

 The set of books you grabbed is called a “cache line” or “memory 

line”



Misses and Hits
 Cache hit:  the processor references an address, 

and the data at that address is in cache

 The good case

 You hope for most of your references to be hits


 Cache miss: the processor references an address, 
and the data at that address is not in cache

 The bad case, which takes much more time

 A memory line is brought into the cache


 The bytes you need and some bytes around it

 So that next time, all those bytes will be in cache


 Let’s see this on a picture…
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All this Happens in Hardware
 All cache management is done in hardware

 The OS or the programmer can’t influence how the 

cache works

 Real hardware is more complex than what we saw in 

the previous slides

 Several levels of cache (the “hierarchy”)

 What happens on a write? (update only the cache or both 

the catch and the memory?)

 Which cache lines should be evicted?

 What happens with multiple cores?

 See a Computer Architecture course


 But regardless, why does it all work?



Locality in your Programs
 The memory hierarchy is useful because of 

“locality”

 Temporal locality: a memory location that was 

referenced in the past is likely to be referenced 
again

 If you reference a byte, you’ll reference it again 

soon (think of updating a counter)

 Spatial locality: a memory location next to one 

that was referenced in the past is likely to be 
referenced in the near future

 If you reference a byte, you’ll soon reference a 

byte close to it (think of going through an array)



Locality for the developer

 In general, all useful programs have some 
locality


 But programming for best locality is a well-
known challenge (see ICS432, ICS433, 
ICS621)


 This means we can write a program with 
horrible locality just to see how bad it is
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Direct Memory Access (DMA)
 Often, one has to copy large chunks of data to/from RAM 

from/to some peripheral device (graphics card, network 
card, sound card, disk) 


 In the pure Von-Neumann model, the CPU has to be 
involved for each copy operation 


 The problem is that memory copies take a long time (even 
with caches), and the CPU spends its life twiddling its 
thumbs while the copies are taking place


 It would be better to have copies occur independently so 
that the CPU can do something useful while the memory 
copies are taking place


 This is called Direct Memory Access

 The “let’s not have the CPU do this” is a common theme



Direct Memory Access (DMA)

 DMA is used on all modern computers 


 e.g., the M1 chip on my laptop has a (pretty 
fancy) DMA controller


 How DMA works (without getting into details):

 The CPU simply tells the DMA controller to initiate 

a RAM copy

 When the copy is complete the DMA controller 

tells the CPU “it’s done” by generating an 
interrupt (more on interrupts very soon)


 In the meantime, the CPU was free to do 
whatever



Direct Memory Access (DMA)
 To perform data transfers the DMA controller uses 

the memory bus 


 In the meantime, the code executed by the CPU 
likely also uses the memory bus 


 Therefore, they can interfere with each other 


 There are several ways in which this interference can 
be managed (give priority to DMA, to CPU, weight 
usage, ...) 


 See a Computer Architecture course 

 In general, using DMA leads to much better 

performance anyway and (good) software should use 
it as often as possible 



Conclusion

 This concludes are lightning fast review/
overview of computer architecture


 You don’t need to be computer architecture 
experts for this course


 But since the OS is in charge of interacting 
with the hardware, you need to know these 
basics


 And many of the principles behind what we’ve 
talked about in this module are reused in 
software by the OS (and programs in general)


