
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

The Memory
Bottleneck

RAM is “slow”
 Often programs are slow because the memory is slow
 Accessing a register is very fast

 e.g., a 4GHz CPU can update a register in 0.25
nanosecond (1 cycle)

 Accessing the memory can take ~50 ns
 What does the CPU do while it’s waiting for the

memory to give it data?

 NOTHING!! (yes, this is a problem)
 This is the famous “Von-Neumann Bottleneck”

 Many techniques have been developed to address
this problem

RAM is “slow”
 Often programs are slow because the memory is slow
 Accessing a register is very fast

 e.g., a 4GHz CPU can update a register in 0.25
nanosecond (1 cycle)

 Accessing the memory can take ~50 ns
 What does the CPU do while it’s waiting for the

memory to give it data?

 NOTHING!! (yes, this is a problem)
 This is the famous “Von-Neumann Bottleneck”

 Many techniques have been developed to address
this problem

The Memory Hierarchy

 We would like a gigantic and fast memory
 Could we just build the memory just as

gazillions of registers?
 No!!! Cost/physics make it impossible

 Instead, we play a trick to provide the illusion
of a fast memory

 This trick is called the memory hierarchy

The Memory Hierarchy

Registers
O(kB), 1 ns

Control
UnitALU

Program counter register

register

register
current instruction

Intel 8088

Caches
O(MB), 1-50 ns

The Memory Hierarchy

Intel
Netburst

Processor

 Memory
O(GB), ~100 ns

The Memory Hierarchy

Dell laptop
motherboard

The Memory Hierarchy

 Disks
O(TB), ~10,000 ns

Apple
laptop

The Memory Hierarchy

Registers
O(kB), 1 ns

Caches
O(MB), 1-50 ns

 Memory
O(GB), ~100 ns

 Disks
O(TB), ~10,000 ns

Faster

Slower

Smaller

Bigger

The Memory Hierarchy in a Nutshell

 When a program accesses a byte in memory
 It checks whether the byte is in cache, and if so, it

just gets it (and puts it in a register)
 Otherwise, the byte value is brought from the

(slow) memory into the (fast) cache
 The values around the byte are also brought into

the cache
 This can happen at all levels

 Each level of the hierarchy serves as a “cache”
for the level below it

The Memory Hierarchy: Analogy

 To write a paper at your desk at home you need a reference
book from the library

 You go to the library and find the book on a shelf, noticing that
the books around it are on the same topic! You can...

 Option #1: Leave the book at the library and go to the library each
time you need one reference

 Option #2: Take only the one book and reuse it at will... but if it
makes a reference to another book on the same topic you’ll have to
go back to the library

 Option #3: Take the one book and the books around it and put
them on your desk... and if the reference makes a reference to
another book, maybe you’ll have the referred book right there

 Option #3 above is: “your desk is a cache for the library”
 The set of books you grabbed is called a “cache line” or “memory

line”

Misses and Hits
 Cache hit: the processor references an address,

and the data at that address is in cache
 The good case
 You hope for most of your references to be hits

 Cache miss: the processor references an address,
and the data at that address is not in cache
 The bad case, which takes much more time
 A memory line is brought into the cache

 The bytes you need and some bytes around it
 So that next time, all those bytes will be in cache

 Let’s see this on a picture…

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Cache space for
2 memory lines

Array that fits in 6
memory lines

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 20”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 20”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 20”

Bring whole line from RAM to Cachecache
miss

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“Great, now I can

access it”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want to access
by at address 17”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“Great! It’s

already in cache”cache
hit

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at

address 5”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at

address 5”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at

address 5”

Bring cache line from RAM to Cachecache
miss

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“Great, now I can

access it”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

And now, the cache is full!

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 43”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 43”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 43”

We need to “evict” a memory line from the
cache to create space (say the blue one)

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 43”

Let’s say we evict the Least Recently Used
(LRU) line from the cache (blue one)

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 43”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 43”

Bring cache line from RAM to Cachecache
miss

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“Great, now I can

access it”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 12”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 12”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 12”

We had the blue line in cache, but evicted
it, so now we’ll incur another cache miss…

All this Happens in Hardware
 All cache management is done in hardware
 The OS or the programmer can’t influence how the

cache works
 Real hardware is more complex than what we saw in

the previous slides
 Several levels of cache (the “hierarchy”)
 What happens on a write? (update only the cache or both

the catch and the memory?)
 Which cache lines should be evicted?
 What happens with multiple cores?
 See a Computer Architecture course

 But regardless, why does it all work?

Locality in your Programs
 The memory hierarchy is useful because of

“locality”
 Temporal locality: a memory location that was

referenced in the past is likely to be referenced
again
 If you reference a byte, you’ll reference it again

soon (think of updating a counter)
 Spatial locality: a memory location next to one

that was referenced in the past is likely to be
referenced in the near future
 If you reference a byte, you’ll soon reference a

byte close to it (think of going through an array)

Locality for the developer

 In general, all useful programs have some
locality

 But programming for best locality is a well-
known challenge (see ICS432, ICS433,
ICS621)

 This means we can write a program with
horrible locality just to see how bad it is

A real
system

Picture obtained with
lstopo on my Linux
server (sudo apt-get
install hwloc)

Direct Memory Access (DMA)
 Often, one has to copy large chunks of data to/from RAM

from/to some peripheral device (graphics card, network
card, sound card, disk)

 In the pure Von-Neumann model, the CPU has to be
involved for each copy operation

 The problem is that memory copies take a long time (even
with caches), and the CPU spends its life twiddling its
thumbs while the copies are taking place

 It would be better to have copies occur independently so
that the CPU can do something useful while the memory
copies are taking place

 This is called Direct Memory Access
 The “let’s not have the CPU do this” is a common theme

Direct Memory Access (DMA)

 DMA is used on all modern computers

 e.g., the M1 chip on my laptop has a (pretty
fancy) DMA controller

 How DMA works (without getting into details):
 The CPU simply tells the DMA controller to initiate

a RAM copy
 When the copy is complete the DMA controller

tells the CPU “it’s done” by generating an
interrupt (more on interrupts very soon)

 In the meantime, the CPU was free to do
whatever

Direct Memory Access (DMA)
 To perform data transfers the DMA controller uses

the memory bus

 In the meantime, the code executed by the CPU
likely also uses the memory bus

 Therefore, they can interfere with each other

 There are several ways in which this interference can
be managed (give priority to DMA, to CPU, weight
usage, ...)

 See a Computer Architecture course
 In general, using DMA leads to much better

performance anyway and (good) software should use
it as often as possible

Conclusion

 This concludes are lightning fast review/
overview of computer architecture

 You don’t need to be computer architecture
experts for this course

 But since the OS is in charge of interacting
with the hardware, you need to know these
basics

 And many of the principles behind what we’ve
talked about in this module are reused in
software by the OS (and programs in general)

