
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Math Review:
Counting and
Addressing

Disclaimer
! The content in these slides will be obvious to many of you

" This is a good thing!

! But when I teach this course, this material often causes
problems

" Although it’s not technically OS material
! And we need it to be solid for this second part of the

semester
" And for the rest of your life!

! So I am presenting is here now, so that students who have
difficulties with this have plenty of time to practice before it
becomes critical for this course

Units of Storage
! The smallest unit of information is the bit

" Anybody knows why it’s called a bit?
! The basic unit of memory is a byte

" 1 Byte = 8 bits
" 1 KiB = 210 Byte = 1,024 bytes
" 1 MiB = 210 KiB = 220 bytes (1 Million) (mega)
" 1 GiB = 210 MiB = 230 bytes (1 Billion) (giga)
" 1 TiB = 210 GiB = 240 bytes (1 Trillion) (tera)
" 1 PiB = 210 TiB = 250 bytes (1,000 Trillion) (peta)
" 1 EiB = 210 PiB = 260 bytes (1 Million Trillion) (exa)

! Often the “i” above is missing, which is not great
! 1GB = 109 bytes, but 1GiB = 230 bytes!

! You have to know the units and order above!!!

Exponents, Logarithms
! We’ll use Exponents:

" αx ·αy = αx+y
" α−x = 1 / αx
" αx / αy = αx−y

! But we’ll do only powers of 2:
" 2x ·2y = 2x+y
" 2−x = 1 / 2x
" 2x / 2y = 2x−y

! We’ll use Logs:
" logα αn = n

! But only for base 2:
" log2 2n = n
" Not to be confused with the natural logarithm, ln, which is really loge (ln ex = x),

and which you’ve seen in Calculus
" In computer science: log2 is often just written as log, especially when we deal

with asymptotic computational complexities (e.g., O(log2 n) = O(log10 n))
! I am going to assume the above is solid for everyone, but if it’s not, you

know what you have to do…

Counting Bytes
! When studying operating systems, we often need to

count “chunks” of bytes in some memory space
! Example #1: how many 1MiB chunks are there in a

8MiB file?
" easy: 8

! Example #2: how many 4KiB chunks are there in a
8GiB file?
" not so easy perhaps?

! The way to do this: use powers of 2
" We want results in powers of 2 anyway because numbers

are typically too large to just write them out in decimal
conveniently

Examples
! How many groups of 12 parking spots are there in 252-spot

parking lot?
" answer: 252 / 12 = 21

! How many groups of x thingies are there in a set of y thingies?
" answer: y / x

! How many 2KiB chunks are there in 1 GiB?
" 1 GiB = 230 bytes
" 2 KiB = 2×210 = 211 bytes
" answer: 230 / 211 = 219 chunks

! How many 8 KiB chunks are there in 128 MiB?
" 128 MiB = 27 ×220 = 227 bytes
" 8 KiB = 23 ×210 = 213 bytes
" answer: 227 / 213 = 214 chunks

Addressing
! We often partition thingies into chunks

" Partition a pie into slices
" Partition a computer’s memory into bytes
" Partition a file into “blocks”
" Partition an address-space into “pages”
" Partition a disk into “sectors”

! After partitioning we need to address the chunks
! Addressing means: “refer to something using a name/number”

! We already know what addresses are:
" Each byte in RAM is addressed by a number (called “the address”)
" An address is stored in binary form in the computer (like all numbers)
" We can then use these addresses, for instance in instructions (“store

value 00110011 at address 1101001”)

How Many Address Bits?
! Key question: what is the range of addresses that we need to address

all chunks (uniquely)?
! We also want the smallest range not to waste address bits by having

large addresses that are not used
" For saving on storage (we store addresses as data to do indirection)

! Example:
" We have 7 mansions in Honolulu (don’t we all?)
" We want to “address” them via binary addresses
" We should use 3 address bits

000, 001, 010, 011, 100, 101, 110
" With 3 bits we can address 23 = 8 houses, so we’re “wasting” one slot
" With 2 bits we can address only 22 = 4 houses (00, 01, 10, 11), so that’s not

enough
" We don’t want to use 4-bit addresses because when we need to store house

addresses as data, then we’re wasting 1 bit of storage per house
! i.e., all addresses would have the same leftmost bit

How Many Address Bits?
! If you have 2n thingies, then you need n-bit addresses to

address the thingies
" fewer, and you can’t address them all
" more, and you’re wasting address bits

! More generally, if you have n thingies, then you need
⌈log2 n⌉-bit addresses

" Example with 7 houses: log2 7 ∼ 2.8074, therefore we should
use ⌈log27⌉ = 3 bits

! In this course we’ll almost always have a number of
thingies that’s a power of 2

" After all we “build” the system and choose what we use
" And as you can see above in red, powers of 2 are convenient

when using binary addresses

Some More Discrete Math
! Say you have a parking lot that consists of a long row of N

parking spots, numbered 0 to N − 1
! We structure this long row into blocks of n parking spots

(assume n divides N)
! Here are two simple discrete math “results”:

1. The x-th spot in the parking lot (0≤x<N) is the (x mod b)-th
spot in the (⌊x/b⌋)-th block

2. The y-th spot in the z-th block is the (z×b+y)-th spot in the
parking lot

! Let’s see this on an example…

Parking Lot Example

! Say we have a parking lot with 3000 spots,
and we structure them in blocks of 100 spots

! What is the index of spot 2212 in its block?
" 2212 mod 100 = 12

! In what block is spot 2212?
" 2212 / 100 = 22 (integer division!)

! What is the global index of spot 5 in block
20?
" 20×100+5 = 2005

(because the first block is block 0)

The End
! In an upcoming lecture we’ll just do a few simple in-

class exercises

! You must be absolutely comfortable with all this since
we’ll soon be doing counting/addressing all the time

! Besides, being a computer scientist implies that you
can count and address things, and that you’re not
fazed by powers of 2!
" Sometimes a first interview question: what’s 2 to the 8? 😳

