Math Review:

Counting and
Addressing

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

" A
Disclaimer

® The content in these slides will be obvious to many of you
This is a good thing!

m But when | teach this course, this material often causes
problems

Although it's not technically OS material

® And we need it to be solid for this second part of the
semester

And for the rest of your life!

®m So | am presenting is here now, so that students who have
difficulties with this have plenty of time to practice before it
becomes critical for this course

" JEE
Units of Storage

® The smallest unit of information is the bit
Anybody knows why it’s called a bit?

® The basic unit of memory is a byte
1 Byte = 8 bits
1 KiB = 210 Byte = 1,024 bytes
1 MiB = 210 KiB = 220 pytes (1 Million) (mega)
1 GiB = 210 MiB = 230 bytes (1 Billion) (giga)
1 TiB = 210 GiB = 240 bytes (1 Trillion) (tera)
1 PiB = 210 TiB = 250 bytes (1,000 Trillion) (peta)
1 EiB = 210 PiB = 260 bytes (1 Million Trillion) (exa)

m Often the “i” above is missing, which is not great
m 1GB = 10° bytes, but 1GiB = 230 bytes!

® You have to know the units and order above!!!

" S
Exponents, Logarithms

m \We'll use Exponents:
ax -qy = ax*ty
ax=1/ax
ox/ ay = axy

m But we’'ll do only powers of 2:
2% -2y = 2xty
2x=1[2x
2x[2y = 2%y

m \We'll use Logs:
loga " = n

m But only for base 2:
log2 2" =n

Not to be confused with the natural logarithm, In, which is really loge (In ex = x),
and which you’ve seen in Calculus

In computer science: logq is often just written as log, especially when we deal
with asymptotic computational complexities (e.g., O(log2 n) = O(log1o n))
® | am going to assume the above is solid for everyone, but if it's not, you
know what you have to do...

" JE
Counting Bytes

® \When studying operating systems, we often need to
count “chunks” of bytes in some memory space

®m Example #1: how many 1MiB chunks are there in a
8MiB file?
easy: 8
® Example #2: how many 4KiB chunks are there in a
8GiB file?
not so easy perhaps?
® The way to do this: use powers of 2

We want results in powers of 2 anyway because numbers

are typically too large to just write them out in decimal
conveniently

" J
Examples

B How many groups of 12 parking spots are there in 252-spot
parking lot?
answer: 252 /12 =21
® How many groups of x thingies are there in a set of y thingies?
answer:y / x

® How many 2KiB chunks are there in 1 GiB?
1 GiB = 230 bytes
2 KiB = 2x210 = 211 pytes
answer: 230 / 211 = 219 chunks
® How many 8 KiB chunks are there in 128 MiB?
128 MiB = 27 x220 = 227 pytes
8 KiB = 23 x210 = 213 pytes
answer: 227 [213 = 214 chunks

"
Addressing

® \\e often partition thingies into chunks
Partition a pie into slices
Partition a computer’s memory into bytes
Partition a file into “blocks”
Partition an address-space into “pages”
Partition a disk into “sectors”

m After partitioning we need to address the chunks
® Addressing means: “refer to something using a name/number”

® \We already know what addresses are:
Each byte in RAM is addressed by a number (called “the address”)
An address is stored in binary form in the computer (like all numbers)

We can then use these addresses, for instance in instructions (“store
value 00110011 at address 1101001")

"
How Many Address Bits?

m Key question: what is the range of addresses that we need to address
all chunks (uniquely)?

® \We also want the smallest range not to waste address bits by having
large addresses that are not used

For saving on storage (we store addresses as data to do indirection)
m Example:

We have 7 mansions in Honolulu (don’t we all?)

We want to “address” them via binary addresses

We should use 3 address bits
000, 001, 010, 011, 100, 101, 110

With 3 bits we can address 23 = 8 houses, so we’re “wasting” one slot

With 2 bits we can address only 22 = 4 houses (00, 01, 10, 11), so that’s not
enough

We don’t want to use 4-bit addresses because when we need to store house
addresses as data, then we’re wasting 1 bit of storage per house
m j.e., all addresses would have the same leftmost bit

"
How Many Address Bits?

® |f you have 2" thingies, then you need n-bit addresses to
address the thingies
fewer, and you can’t address them all
more, and you're wasting address bits

® More generally, if you have n thingies, then you need
[log2 n]-bit addresses
Example with 7 houses: log> 7 ~ 2.8074, therefore we should
use [log27] = 3 bits
B |n this course we’ll almost always have a number of
thingies that's a power of 2
After all we “build” the system and choose what we use

And as you can see above in red, powers of 2 are convenient
when using binary addresses

" A
Some More Discrete Math

B Say you have a parking lot that consists of a long row of N
parking spots, numbered 0 to N - 1

® \We structure this long row into blocks of n parking spots
(assume n divides N)

® Here are two simple discrete math “results™:

1. The x-th spot in the parking lot (0=x<N) is the (x mod b)-th
spot in the (| x/b|)-th block

2. The y-th spot in the z-th block is the (zxb+y)-th spot in the
parking lot

m | et's see this on an example...

"
Parking Lot Example

®m Say we have a parking lot with 3000 spots,
and we structure them in blocks of 100 spots

® \What is the index of spot 2212 in its block?
2212 mod 100 = 12
® |n what block is spot 22127
2212 /100 = 22 (integer division!)
® \What is the global index of spot 5 in block
207

20x100+5 = 2005
(because the first block is block 0)

"
The End

® |n an upcoming lecture we’ll just do a few simple in-
class exercises

® You must be absolutely comfortable with all this since
we’ll soon be doing counting/addressing all the time

m Besides, being a computer scientist implies that you
can count and address things, and that you're not
fazed by powers of 2!

Sometimes a first interview question: what'’s 2 to the 87 @&

