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It’s a Data Structure
 A File System basically implements an (on-disk) 

data structure to store the directory structure, the 
files, and their content

 Part of that on-disk data structure is sometimes brought 

into RAM temporarily

 A File System implements simple operations on this 

data structures to manage files:

 open, read, write, delete, move, etc.


 The data structure and operation implementations 
should be efficient, should not waste too much 
space, and should be able to survive data 
corruptions



Files as Blocks
 The content of a file is stored as a set of blocks


 Stored on HDD blocks or SDD pages

 For each file we need an inode data structure to track where 

the file blocks are and store all kind of useful information 
about the file (e.g., permission, data of creation)


 “inode” is UNIX/Linux terminology, which OSTEP uses throughout

 Let’s call it “inode” here too, just like OSTEP,


 We now have two “regions” on disk

 The inode region (one block contains more than one inode)

 The data region

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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Non-Contiguous Allocations

 We already know from the MainMemory module that 
contiguous allocation is not a good idea


 Fragmentation makes it difficult for find a large enough contiguous 
set of holes to store a new file


 What if we want to append to the end of a file and there are no free 
block after its last block?


 So we do non-contiguous allocation

 A file’s blocks are not necessarily next to each other on the disk


 The inode structure needs to keep track of where each block is

 It can’t just be “index of first block and index of last block”!
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again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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Keep Track of Free Blocks?

 There are free blocks on the disk

 Shown as empty squares in the figure above


 The file system needs to keep track of where free blocks are

 One option: an on-disk linked list of free blocks


 Each block stores a few bytes that encode the index of the next free block

 The file system just needs to index of the “first” free block

 This could be optimized by keeping the number of consecutive free blocks


 So that we have a linked list of groups of contiguous free blocks

 The fact that a linked list is O(n) for traversal is ok since we really never 

need to traverse it

 An other option: a bitmap 
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again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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Bitmap of Free Blocks 

 Main idea: we have an array of bits, one per block index on disk

 0 means “free”, 1 means “not free”


 This is called a bitmap

 A bitmap doesn’t take much space


 Say our disk is 2TiB with 4KiB blocks

 That’s a total of 2^41 / 2^12 = 2^29 blocks

 So the bitmap needs 2^29 bits

 That’s 2^26 bytes, or 64MiB

 This is only 0.003% of the total disk space “wasted” to store the  bitmap


 A file system can keep two bitmaps

 A bitmap of free inode blocks

 A bitmap of free data blocks

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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Bitmap of Free Blocks 

 Main idea: we have an array of bits, one per block index on disk

 0 means “free”, 1 means “not free”


 This is called a bitmap

 A bitmap doesn’t take much space


 Say our disk is 2TiB with 4KiB blocks

 That’s a total of 2^41 / 2^12 = 2^29 blocks

 So the bitmap needs 2^29 bits

 That’s 2^26 bytes, or 64MiB

 This is only 0.003% of the total disk space “wasted” to store the  bitmap


 A file system can keep two bitmaps

 A bitmap of free inode blocks

 A bitmap of free data blocks

i d

Shown in OSTEP like this, but 
each bitmap can span fewer or 
more than one disk block
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
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 There needs to be information on disk about the file system as a 
whole


 Which type of file system

 The block size

 The total number of blocks

 Where the bitmaps are

 Where the data region begins

 Where the inodes region begins


 OSTEP calls this the superblock, A UNIX terminology

 In NTFS is called the Master File Table, in FAT it’s called the boot 

sector, etc. 
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Recap So Far
 The File System on disk is, essentially:


 A bunch of data blocks

 For each file, blocks that contain a data structure that 

makes it possible to find information about the file and 
to locate all its data blocks


 Blocks that contain data structures that make it 
possible to keep track of free blocks


 Blocks that contain a master data structure that makes 
it possible to find all the other data structures


 Next up: what data structure should we use to 
keep track of a file’s blocks?

 The “inode”



The inode Data Structure
 The term “inode” comes from “index node”

 This is the “low-level” name of a file


 That we saw printed on the terminal with ls -i

 As we said before, the inode contains all possible 

information about each file, or metadata

 The key information an inode needs to encode is a 

way to find all of the file’s blocks

 And all inodes should have the same size otherwise 

the file system implementation becomes much more 
complicated


 Let’s look at a few options for the inode data 
structure…



An Array of Direct Pointers?
 Consider a file that consists of these 5 blocks
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An Array of Direct Pointers?
 Simple option: The inode stores an array of direct pointers


 Basically, the list of all blocks that belong to the file
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An Array of Direct Pointers?
 Simple option: The inode stores an array of direct pointers


 Basically, the list of all blocks that belong to the file
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An Array of Direct Pointers?
 Simple option: The inode stores an array of direct pointers


 Basically, the list of all blocks that belong to the file

 Problems:

 If the inode has n pointers and you have a 1-block file, you’re wasting 

n-1 pointers: so n should be small

 If the inode has n pointers and you want to store a file that has more 

than n blocks, you cannot: so n should be large

 Picking a good n is not easy :)

inode
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An On-Disk Linked List?
 One solution: just use an on-disk linked list


 A few bytes in each block are used to store the index of the next block
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 One solution: just use an on-disk linked list
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An On-Disk Linked List?
 One solution: just use an on-disk linked list


 A few bytes in each block are used to store the index of the next block

 Problem:

 Random access requires traversing the linked list, which 

is too slow (disk accesses are slooooow!)

 If one block gets corrupted, then we lose all blocks after it

inode
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A Hierarchical Index?
 Another solution: Same idea as hierarchical page tables


 The inode points to an index, which points to indices, etc.
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 Another solution: Same idea as hierarchical page tables
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A Hierarchical Index?
 Another solution: Same idea as hierarchical page tables


 The inode points to an index, which points to indices, etc.

 Problem:

 How do we pick the depth of the hierarchy?

 Say we pick depth 10 because we want to accommodate large files

 Then to access a 1-block file we need to access 10 blocks


 We just made our disk 10x slower for small files!!!

 And most files are small in practice, so we need to be fast for them!


 Once again, we have a small file / big file problem….
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Multi-level Index
 Combine previous solutions into one: multi-level index
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17

Multi-level Index
 Combine previous solutions into one: multi-level index

 In the above example: 2 “direct” blocks and 3 “single-indirect” 
blocks


 Many file system implementations use this idea
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These index blocks are 
allocated only if needed
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 Say a block index/pointer is 8 
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 Say block size is 4KiB

 Say a block index/pointer is 8 

bytes

 What is the maximum file size?

12 x 4KiB + 

(212/23) x 4KiB + 

(212/23)2 x 4KiB +      ~= 513GiB  

(212/23)3 x 4KiB



And now, for something 
completely different… FAT
 What we’ve described so far is a pretty standard UNIX approach

 An old, but still used today, filesystem on Windows is FAT (File 

Allocation Table)

 NTFS is more recent, and uses a different kind of table


 The simple idea of FAT is that there is a table stored on disk, that is 
loaded (at least partially) in RAM upon boot


 Since it’s in RAM, accessing the table is fast!

 The table keeps track of clusters of contiguous file blocks, in a linked list 

manner

 Each entry in the table is for a cluster, and that table entry is the index of 

the next cluster

 A “cluster” is simply some fixed number of disk blocks


 Finding free space is simple: free clusters are organized in a linked list, 
and one just need to find the first entry in the table that contains a zero


 Let’s see this on a picture…



The FAT table

712

34

0xFFFFFF8
foo.txt 245…

245

712

34

 A file entry in the file system 
just contains one FAT table 
index


 This is the index of a cluster

 The entry in the table for that 

cluster contains the index of 
the next cluster


 The last entry contains some 
reserved code that means 
“last cluster”



The FAT table

0

0

0

 Free clusters simply have 
an entry set to 0 in the 
table


 Finding free space means 
finding the first entry in the 
table that has value 0


 This is a O(n) search, but 
in memory


 Not super efficient

 Not great for fragmentation

 NTFS remedies this


 Using a bitmap!

100

407

928



Directories
 A directory is described in an inode, just like a normal file

 But its content is a list of key-value pairs:


 A user-level name (and perhaps a length)

 An inode reference


 Each directory has two additional entries: “.” and “..”

 For instance, a directory content on disk could be (encoded in 

binary):

bar

tmpf1.tx some_long_name

inode#  rclen   strlen  Name

24      20      1       .

72      20      2       ..

0       40      ??      ?????

23      20      6       f1.txt

189     20      3       tmp

121     40      14      some_long_name



inode#  rclen   strlen  Name

24      20      1       .

72      20      2       ..

0       40      ??      ?????

23      20      6       f1.txt

189     20      3       tmp

121     40      14      some_long_name

Directories
 A directory is described in an inode, just like a normal file

 But its content is a list of key-value pairs:


 A user-level name (and perhaps a length)

 An inode reference


 Each directory has two additional entries: “.” and “..”

 For instance, a directory content on disk could be (encoded in 

binary):

bar

tmpf1.tx some_long_name

Length of this record, 
which is a multiple of 
some integer (here: 
20). This means that 
each record has some 
unused bytes. But it 
simplifies the 
implementation if 
records are all multiples 
of the same integer



Directories
 A directory is described in an inode, just like a normal file

 But its content is a list of key-value pairs:


 A user-level name (and perhaps a length)

 An inode reference


 Each directory has two additional entries: “.” and “..”

 For instance, a directory content on disk could be (encoded in 

binary):

bar

tmpf1.tx some_long_name

inode#  rclen   strlen  Name

24      20      1       .

72      20      2       ..

0       40      ??      ?????

23      20      6       f1.txt

189     20      3       tmp

121     40      14      some_long_name

An inode number 0 
means: this slot isn’t 
used. This happens 
after a file is deleted. 

This empty record can 
then be reused later 
when a new file is 
created in the directory



Isn’t a Linear List O(n)??
 You have likely noted that in the previous slides we say that 

the directory contains a list of entries for its content

 This means we we have to do a linear search for a name in 

that list, which is O(n)

 If a directory has a lot of entries, then this can take a long time

 There are file systems that use better data structures for 

logarithmic-time searching (e.g., a B-tree)

 Everything you learn in 311 comes into play here


 But the measure of complexity should be the number of disk blocks 
read/written, not some number of compute operations


 There are many, many, many file systems out there that have 
used or currently use all kinds of data structures


 But for now, let’s stick to our simple list…



Opening a Path
 Now that we understand how directories are stored, it’s easy to see how to 

navigate the directory hierarchy to find a file

 Say the user does: open(“/home/henric/ics332/file_system.pdf”)


 In the superblock find the address of the inode for “/“ and load this inode into 
RAM


 Load the data blocks pointed to by this inode until an entry for “home” is found, 
and then load that inode into RAM


 Load the data blocks pointed to by this inode until an entry for “henric” is found, 
and then load that inode into RAM


 Load the data blocks pointed to by this inode until an entry for “ics332” is found, 
and then load that inode into RAM


 Load the data blocks pointed to by this inode until an entry for 
“file_system.pdf” is found, and then load that inode into RAM


 FINALLY: access the data blocks points to by that inode, which is the file content 
we wanted


 Assuming that each directory content fits in a single block, this is 10 block loads 
before we can load the first data block of the file!!


 This is a lot of I/O!!!



Opening a Path
 The previous slide is the reason why we have and open() 

system call, instead of something like:

 read(“/home/henric/ics332/
file_system_implementation.pdf”, 12)


 write(“/home/henric/ics332/
file_system_implementation.pdf”, data, 48)


 lseek(“/home/henric/ics332/
file_system_implementation.pdf”, 56)


 …


 Furthermore, all (good) file systems cache path translations

 i.e., the address/index of the inode for file 

“file_system_implementation.pdf” is remember after it’s 
closed, just in case it’s opened again later


 A “software cache” managed using LRU

 Like a TLB,  but in software



Data Block Caching
 Most file systems implement some form of caching


 Remember that disk controllers also implement their own caching

 When you read a (clean) block that you’ve read recently, 

likely you will get it from an in-memory cache rather than from 
the Disk


 When you write a block, likely it won’t go to disk but stay in 
an in-memory cache


 It could be written later whenever the disk is idle

 Or it could never be written at all if the program re-writes it


 Imagine a program that every 1ms writes one different byte in the block

 This program should only write the block back to disk once its done!


 And if the system crashes, you’ve lost data!

 Caching is the one idea that occurs EVERYWHERE in this 

course



Consistency Checking
 The File System shouldn’t lose data or become inconsistent 

 It’s a fragile affair, with data structure pointers all over the place, 

and data/metadata cached in memory 

 An abrupt shutdown can leave an inconsistent state


 The system was in the middle of updating some pointers

 Part of the cached data/metadata was never written back to disk 


 One approach: perform consistency checking

 Consistency can be checked by scanning all the metadata


 Takes a long time, occurs upon reboot if necessary

 A “is it necessary to do the check?” bit is kept up-to-date by the system 

 Unix: fsck, Windows: chkdsk  

 Overall philosophy: we allow the system to be corrupted, and we 
later attempt repair



Journaling
 Issue with consistency checking:


 Some data structure that is damaged may not be repairable

 Human intervention is needed

 Checking a large file system takes a very long time 


 Another option: Log-based transaction-oriented FS (Journaling)

 Whenever the file system metadata is about to be modified, the 

sequence of actions, or transaction, to perform is written to a circular log 
and all actions are marked as “pending” 


 Then the system proceeds with the actions asynchronously, marking 
them as completed along the way 


 Once all actions in a transaction are completed, the transaction is 
“committed”


 If the system crashes, we know all the pending actions in all non- 
committed transactions, so we can perform an undo 


 Writing to the log is overhead, but it’s sequential writing to the log file, 
and (on HDD) sequential writing is fast 



Conclusion
 File Systems are considered part of the OS, but 

implementations are developed outside of the OS

 It’s an OS thing, but it’s not part of the Kernel code


 File Systems are a huge topic and we only 
scratched the surface here

 If you’re into it: OSTEP Chapters 42, 43, 45, 48, 49, 50

 There is a lot of research and development in this area 

(especially for Distributed File Systems)

 What we covered in this modules gives you the 

basics from which you can, if needed/desired, 
work towards becoming a file system expert


