
Henri Casanova (henric@hawaii.edu)

ICS332

Operating Systems

File System
Interface

File System
 The term “File System” is a bit confusing

 It can mean the component of the OS that knows how to

virtualize storage

 As in “I am using a very fast file system implementation”

 We’ll talk about the OS component in the next set of lecture notes

 It can mean the data stored on a disk partition or “volume” (i.e., a
disk partition that contains a file system)

 As in “my file system hasn’t been backed up”

table of content

file data
file system

stored on disk

File System
 The term “File System” is a bit confusing

 It can mean the component of the OS that knows how to

virtualize storage

 As in “I am using a very fast file system implementation”

 We’ll talk about the OS component in the next set of lecture notes

 It can mean the data stored on a disk partition or “volume” (i.e., a
disk partition that contains a file system)

 As in “my file system was erased”

table of content

file data
file system

stored on disk

File System

table of content

file data

file system

stored on one

partition

file system

stored on

another partition

table of content

file data

 There can be multiple file
systems stored on the
same physical disk, in
different partitions

 The term “File System” is a bit confusing

 It can mean the component of the OS that knows how to

virtualize storage

 As in “I am using a very fast file system implementation”

 We’ll talk about the OS component in the next set of lecture notes

 It can mean the data stored on a disk partition or “volume” (i.e., a
disk partition that contains a file system)

 As in “my file system was erased”

Files
 The key abstraction to virtualize storage is a file

 An array of bytes where each byte can be read or written

 Has a low-level name (e.g., a number) and a user-level name (e.g.,

“foo.txt”)

 Has associated metadata (owner, last write time, read/write/execute

permissions)

 Has some internal type (regular file, symbolic link, hard link, device)

 What about user-level file types?

 A common practice is to use “file extensions” (like .txt)

 In some OSes, it is used to figure out what application can open the files

 But file extensions are typically just conventions

 In Linux you can name an executable with a .txt extension if you want

 In Windows you can, but you need to tell Windows about it (PATHEXT)

 But in general, the type of a file is based on its content, often on the first
few bytes (called the “magic number”)

 The UNIX file command uses this to display useful file “types”

 Let’s try it on my /bin/local directory…

File Operations
 A file is an abstraction, i.e., an abstract data type, on which the OS

defines several operations

 Creating

 Writing/Reading

 A current-file-position pointer is kept per process, updated after each write/read operation

 Repositioning the current-file-position pointer (a “seek”)

 Appending at the end of a file

 Truncating / Deleting

 Renaming

 Getting / changing metadata

 OSTEP 39 has many examples of using the POSIX file system interface
for creating/reading/writing/deleting files

 I am not going to go through all of those here

 Most of you should be familiar with some of this anyway

 In these lecture notes we go through some of the ideas/concepts without

necessarily showing the corresponding code (see OSTEP for all details)

Opening Files
 The OS requires that processes open and close

files

 As you know from writing code in basically any language

 After an open, the OS copies the file system’s file
entry into an open-file table that is kept in RAM in
the kernel

 The OS keeps an open file tables

 A process specifies an open file as an index in its

own list of open files

 The famous “filed” (file descriptor) in Linux

 Let’s see an example …

Open File Table

 Consider a system
with 3 files on diskA

B

C

Kernel

Open File Table

A

B

C

Kernel

 Open File A
Process #1

 To open a file a process gives its path to the OS

 The OS asks the file system to use its on-disk

“table of content” to locate a data structure that
describes the file

 The block index of the first block, the total number of
blocks, other useful metadata

 The OS then creates an entry in the open file table

 The OS returns a file description (an integer) to the

process, which is an index in its list of opened files

 These stay around until the process closes the file

Open File Table

A

B

C

Kernel

 Open File A
Process #1

File A curr-file-pos

Open file table
…

Process #1
Stdin0

Metadata the OS needs
to access the file

The current-file-position
pointer (where the process
is accessing data in the file)

Stdout1
Stderr2
File A3

Open File Table

A

B

C

Kernel

 Open File A

 Open File C

Process #1

File A curr-file-pos

Open file table
… Stdin0

Stdout1
Stderr2
File A3
File C4

curr-file-pos…File C

Process #1

File A

Open File Table

A

B

C

Kernel

 Open File A

 Open File C

 Open File A

Process #1

File A curr-file-pos

Open file table
… Stdin0

Stdout1
Stderr2

3
File C4

curr-file-pos…
File A curr-file-pos…

5 File A

A single process can
open a file multiple
times. It now has more
than one current-file-
position offsets into the
file.

File C

Process #1

File A

Open File Table

A

B

C

Kernel

 Open File A

 Open File C

 Open File A

Process #1

File A curr-file-pos

Open file table
… Stdin0

Stdout1
Stderr2

3
File C4

curr-file-pos…
File A curr-file-pos…

5 File A

File C

 Open File A

Process #2

Process #1

File A

Stdout1
Stderr2

3

Process #2
Stdin0

File A curr-file-pos…

Open File Table

A

B

C

Kernel

 Open File A

 Open File C

 Open File A

 Close(3)

Process #1

Open file table
Stdin0
Stdout1
Stderr2

3
File C4

curr-file-pos…
File A curr-file-pos…

5 File A

File C

 Open File A

Process #2

Process #1

File A

Stdout1
Stderr2

3

Process #2
Stdin0

File A curr-file-pos…

Open File Table

A

B

C

Kernel

 Open File A

 Open File C

 Open File A

 Close(3)

 Close(1)

Process #1

Open file table
Stdin0

1
Stderr2

3
File C4

curr-file-pos…
File A curr-file-pos…

5 File A

File C

 Open File A

Process #2

Process #1

File A

Stdout1
Stderr2

3

Process #2
Stdin0

File A curr-file-pos…

Stdout

Open File Table

A

B

C

Kernel

 Open File A

 Open File C

 Open File A

 Close(3)

 Close(1)

 Open File B

Process #1

File B curr-file-pos

Open file table
… Stdin0

Stdout1
Stderr2

3
File C4

curr-file-pos…
File A curr-file-pos…

5 File A

File C

 Open File A

Process #2

Process #1

File A

Stdout1
Stderr2

3

Process #2
Stdin0

File A curr-file-pos…

Stdout is redirected
to File B!

File Locking
 Bad things may happen when multiple processes reference

the same file and update its content

 Just like when threads update the same memory location

 All file systems provides “file locks”

 Can be acquired for a full file or for a portion of a file

 The OS may require mandatory locking for some files

 e.g., for writing for a log file that many system calls write to

 You may have encountered that

 Let’s try to sudo apt update in two terminals at the “same” time

 Applications have to implement their own locking

 From a Shell script on Linux, one can use flock

 Java implements lock()/release() methods as part of the
java.nio.channels package

Shared Open File Table Entries
 Each time a process opens a file, an entry is created

in the Kernel’s open file table

 But there are ways in which a process can “duplicate”

an existing file descriptor (see the Processes module)

 By being a child of a process with that file descriptor

 But using the dup() syscall

 In this case, multiple file descriptors can point to the
same open file table entry

 OSTEP Figure 39.2 shows code in which a parent a
child shared the same open file table entry

 The child updates the current-file-position pointer, and the

parent “sees” that update!

Open File Table

A

B

C

Kernel

 Open File A

 Open File C

 Fork Child

Parent

File A curr-file-pos

Open file table
… Stdin0

Stdout1
Stderr2

3
File C4

curr-file-pos…

File A

File C

Child

Parent

Stdout1
Stderr2

Child
Stdin0

3
File C4
File A

Directories
 The other main abstraction provided by the

file system is the directory (or folder):

 A special kind of file: it’s data is not user data

but just as list of files/directories it “contains”

 This makes it possible to create a hierarchy

 In Figure 39.1, the absolute path to the

rightmost bar.txt file is /bar/foo/
bar.txt

 In UNIX the separator is ‘/‘ and the top-level
directory is called ‘/‘

 Paths look different in Windows (C:
\bar\foo\)

 “.” and “..” are used to mean “this directory”
or “the parent directory”

 Often one talks of the path relative to a
working directory

 In Figure 31.9 ../bar/foo/bar.txt is a
relative path to the working directory /foo

2 INTERLUDE: FILES AND DIRECTORIES

/

foo

bar.txt

bar

foobar

bar.txt

Figure 39.1: An Example Directory Tree

this name (as we will see). For historical reasons, the low-level name of a
file is often referred to as its inode number. We’ll be learning a lot more
about inodes in future chapters; for now, just assume that each file has an
inode number associated with it.

In most systems, the OS does not know much about the structure of
the file (e.g., whether it is a picture, or a text file, or C code); rather, the
responsibility of the file system is simply to store such data persistently
on disk and make sure that when you request the data again, you get
what you put there in the first place. Doing so is not as simple as it seems!

The second abstraction is that of a directory. A directory, like a file,
also has a low-level name (i.e., an inode number), but its contents are
quite specific: it contains a list of (user-readable name, low-level name)
pairs. For example, let’s say there is a file with the low-level name “10”,
and it is referred to by the user-readable name of “foo”. The directory
that “foo” resides in thus would have an entry (“foo”, “10”) that maps
the user-readable name to the low-level name. Each entry in a directory
refers to either files or other directories. By placing directories within
other directories, users are able to build an arbitrary directory tree (or
directory hierarchy), under which all files and directories are stored.

The directory hierarchy starts at a root directory (in UNIX-based sys-
tems, the root directory is simply referred to as /) and uses some kind
of separator to name subsequent sub-directories until the desired file or
directory is named. For example, if a user created a directory foo in the
root directory /, and then created a file bar.txt in the directory foo,
we could refer to the file by its absolute pathname, which in this case
would be /foo/bar.txt. See Figure 39.1 for a more complex directory
tree; valid directories in the example are /, /foo, /bar, /bar/bar,
/bar/foo and valid files are /foo/bar.txt and /bar/foo/bar.txt.

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG

Hard Links
 Remember that we said that a file has an internal name and a

user-level name

 The internal “name” is really a pointer to some data structure that

describes everything about the file

 That data structure is stored on disk as part of the file system (the

famous inode in UNIX systems, see next set of lecture notes)

 But there can be multiple user-level names for the same file!

 A user-level name for a file is called a “link”

 There is a link() syscall to associate a new name to a file

 It takes as input an already existing name and the new name

 The UNIX ln command uses this system call to create new links

 ln <existing name> <new name>

 Let’s try it, and look the internal file name using ls -i…

Link Count

 The links we created in the previous slides are
called hard links

 There was no difference between the two files

 You can remove one without any problem

 If you remove both, the file disappears

 There is a reference count in the internal file
data structure (called the link count), and when
it reaches zero the file and its content are
deleted

 We can see the link count using the stat command

 Let’s try that…

Hard Link
 Hard links can be used for all kinds of purposes, for instance:

 On Linux, whenever a process opens a file, a hard link to is is created

 Say that process with PID 2233 uses calls open()on /home/henric/
somefile

 open() returns a file descriptor, i.e., an integer, say 55
 At that point, a hard link to /home/henric/somefile is created in  

/proc/2233/fd/55

 If, while the process is running, /bin/rm /home/henric/somefile is

executed, then the file survives because its reference count is non-zero!!
 Essentially, you can’t remove the data for a file while a process is using it, which is

probably a good thing

 This allows you to retrieve a file that you’ve erased by mistake as long as
some process has it opened

 You might want to create hard links to your important files anyway
 Let’s try this on a Linux box...

Soft (or Symbolic) Links
 Soft links are just “shortcuts” that points to a path

 If you remove a soft link, nothing happens to the file

 i.e., soft links don’t contribute to the link count

 Hard links have limitations, as they only make sense within the

same file system, but soft links can point anywhere, to any
partition, because they’re just paths

 A soft links is really a special kind of file

 Just like Desktop shortcuts in Windows for instance

 If the file pointed to has a longer name, the soft link size will be bigger!

 Soft links are created using ln -s

 Let’s try it (and use ls -l) …

 A soft link can be dangling if its target is removed!

 That cannot happen with hard link

 Let’s test that…

Hard-linking Directories?
 In Linux, it is not possible to create a hard link to a directory

 This is to avoid cycles in the directory hierarchy!

 Makes algorithms for traversing the hierarchy more complicated

 Requires garbage collection of disconnected subgraphs

/

foo bar

tmp

dir1

dir2
f1.txbar

foo.t

MacOS Time Machine
 MacOS allows hard-linking of directories

 Which makes implementing the file system more complicated

 Time Machine is the backup mechanism for MacOS

 It uses hard links

 Every time a backup is made, a new backup directory is created
that contains a snapshot of the current state of the file system

 Files that have not been modified are hard links to previously
backed up version

 A new backup should be mostly hard links instead of file copies (major
space saving)

 When an old backup directory is wiped out, then whatever files
have a reference count of zero are removed (no longer part of
more recent data)

 Let’s see an example….

MacOS Time Machine

t = 0

Backup DiskDisk to backup

Directory

File

MacOS Time Machine

t = 0

Backup DiskDisk to backup

First backup

Full copy

MacOS Time Machine

t = 1

Backup DiskDisk to backup

By time 1, one file has
been deleted, one
modified, and one added

First backup

By time 1, one file has
been deleted, one
modified, and one added

By time 1, one file has been
deleted, one modified, and one
added. Let’s trigger a new backup…

MacOS Time Machine

t = 1

Backup DiskDisk to backup

First backup

Second backup

Hard Links

When the user does a new backup, content that has
not changed is hard-linked to the previous backup!

MacOS Time Machine

Backup Disk

First backup

Second backup

Hard Links

 The user can now safely delete the first backup by
deleting the top-level directory…

MacOS Time Machine

Backup Disk

First backup

Second backup

Hard Links

 The user can now safely delete the first backup by
deleting the top-level directory…

MacOS Time Machine

Backup Disk

Second backup

Hard Links

 The user can now safely delete the first backup by
deleting the top-level directory…

MacOS Time Machine
 Advantages:

 Extremely simple to implement

 The backup can be navigated in all the normal ways, without any

specific software!

 Provided backups are frequent, they are done by creating mostly hard

links (which is MUCH faster than copying data)

 Drawback:

 If you change 1 byte in a 10GB file, then you copy the whole file again

 We can implement this on Linux, but we don’t have hard-linking

of directories!

 So for each backup we have to re-create the whole directory structure

and create hard links to all individual files!

 Such implementations do exist, but they have much higher overhead

than Time Machine

 Unless you install a file system that allows hard-linking of directories

File System Mounting
 There are typically multiple file systems on the same machine

 Each file system is mounted at a special location, the mount point

 Typically seen as an initially empty directory

 When given a mount point, a volume, a file system type, the OS

 Asks the device driver to read the volume on the device

 Checks that the volume does contain a valid file system

 Makes note of the new file system at the specified mount point, where

the content will be seen as if it was just the content of a directory

 Mac OS X: all volumes are mounted in the /Volumes/ directory

 Including temporary volumes on USB keys, CDs, etc.

 UNIX: volumes can be mounted anywhere

 The mount command lists all mounted volumes

 Windows: volumes were identified with a letter (e.g., A:, C:), but

current versions, like UNIX, allow mounting anywhere

Protection
 File systems provide controlled access

 General approach: Access Control Lists (ACLs)

 For each file/directory, keep a list of all users and of all allowed accesses
for each user

 Protection violations are raised upon invalid access

 Problem: ACLs can be very large

 Solution: consider only a few groups of users and only a few

possible actions

 UNIX:

 User, Group, Others not in Group, All (ugoa)

 Read, Write, Execute (rwx)

 Represented by a few bits

 chmod command:

 e.g., chmod g+w foo (add write permission to Group users)

 e.g., chmod o-r foo (remove read permission to Other users)

Conclusion

 You have all used file systems before, so
these lecture notes attempts to focus on
things that some of you may not have been
completely familiar with

 Open file table

 Hard links

 See OSTEP 39 for more details

 In the next set of lecture notes we’ll look at
how a file system is implemented!

