
Henri Casanova (henric@hawaii.edu)

ICS332

Operating Systems

Introduction

Course Goal
 At this point in your life you:

 Have used at least one OS

 Know which OS runs on your computer

 Know that with the OS you couldn’t use your computer

 Yet, for most of you, the OS is pretty mysterious

 Say your art major friend asks: “What really happens

when I double click on an icon to run an application on my
computer?”

 Could you give a decent answer besides: “Amazingly, it all
works?”

 As a Computer Scientist it’s ok to not know much about
how a car/fridge/airplane works, but it’s not ok to be
clueless about how an OS works

Motivation to Study OSes?
 After all, very few of you will develop an actual OS

 But, most of you will work on complex systems that couple

together many components (not an ICS211 assignment)

 Obvious Motivation: These systems all use the OS heavily

 Important to know how to the use the OS as a programmer

 Important to know that the OS can and cannot do

 Important to know what happens under the cover to understand

bug, security, performance, etc.

 Meta Motivation (you have to trust me on this one): Knowing OS

principles makes you a better software architect and developer

 OS concepts are massively re-usable in your own projects

 Asking oneself “how does the OS do this?” Is always useful

 The need for OS knowledge arises regularly for almost

every developer throughout their career

OS in the News
 If you follow the news, general or tech-oriented, you

know there are quite a few OS-related item each month

 Some about new “exciting” features targeted at consumers,

often very vague on details

 Some about problems/bugs, typically targeted at computer

professionals

 After taking this course you should be able to

understand these, to at least the OS side to them

 Often, understanding to computer architecture is also

needed, as vulnerabilities/attacks are typically at the
software/hardware interface

 Let’s see two famous examples…

The software patches could slow the
performance of affected machines by 20 to 30
percent, said Andres Freund, an independent
software developer who has tested the new Linux
code. The researchers who discovered the flaws
voiced similar concerns

January ’18
“Spectre,

Meltdown”

January ’18
“Spectre,

Meltdown”

The software patches could slow the
performance of affected machines by 20 to 30
percent, said Andres Freund, an independent
software developer who has tested the new Linux
code. The researchers who discovered the flaws
voiced similar concerns

You’ll also be able to spot glaring errors/confusions
in newspaper articles (there is a big one on this slide)

We’ll show this slide again to point them out…

Simultaneous multithreading (SMT, or
"hyperthreading") is a hardware feature
that implements two or more threads of
execution in a single processor

… the Spectre class of hardware vulnerabilities
have made this problem far worse. About the only
way to safely run processes that don't trust each
other (with current kernels) is to disable SMT
entirely; that is a prospect that makes a lot of
people, cloud-computing providers in particular,
distinctly grumpy.

Whenever a CPU enters the scheduler, the
highest-priority task will be picked to run in
the usual way. If core scheduling is in use,
though, the next step will be to send an
inter-processor interrupt to the sibling CPUs,
each of which will respond by checking the
newly scheduled process's cookie value
against the value for the process running

Simultaneous multithreading (SMT, or
"hyperthreading") is a hardware feature
that implements two or more threads of
execution in a single processor

About the only way to safely run
processes that don't trust each other (with
current kernels) is to disable SMT entirely;
that is a prospect that makes a lot of
people, cloud-computing providers in
particular, distinctly grumpy.

Whenever a CPU enters the scheduler, the
highest-priority task will be picked to run in
the usual way. If core scheduling is in use,
though, the next step will be to send an
inter-processor interrupt to the sibling CPUs,
each of which will respond by checking the
newly scheduled process's cookie value
against the value for the process running

We’ll learn about scheduling as done by the kernel,
we’ll see what hyper threading is, and given the
Meltdown/Spectre vulnerabilities, we’ll easily
understand how this approach works

Disclaimer (1)
 Wouldn’t it be great for us to develop an OS during the semester

 Sadly, it’s not feasible:

 Too hard, time-consuming, programming-heavy for most students at this
stage in their education, especially students who may struggle with C

 Or at least given the expected number of hours a student should put into
an undergraduate course...

 As a result, undergraduate OS courses are often less “hands-on”
than what some students expect

 Typically a few of you come into this thinking we’re going to do awesome
hacks in the Linux kernel….and will be disappointed

 If your dream is to get your hands dirty with the OS kernel you can:

 Do an internship at a company that does low level / OS-related work, do an
OS-related Google Summer of code, ..

 Take the OS graduate course

 Do it on your own (each semester there is at least one student who does this

and there are tons of on-line resources!)

Disclaimer (2)
 I am not an “OS geek”

 If you’ve read the source code of some OS, if you have

worked on an OS (internship), if you have any useful
knowledge, you are very welcome to share with the
class

 I’m always happy to have course contents evolve
dynamically based on students suggested topics within
some reasonable bounds

 This said, the class is more on general principles than
specific implementations (since those change often, as
we will see)

 You can learn a lot about OSes without necessarily spending
hours looking at OS code

Teaching OS is not easy
 A significant part of the material is of the “here is how it

works and why it’s a good idea” kind

 Precisely because it’s not feasible to have the full-fledged
hands-on experience at the undergraduate level

 Don’t fear, there will be plenty of programming / hands-on
activities in this course

 Although I try to make the course as interactive as
possible, there is just a limit to what any instructor can
do for some of this material at the undergraduate level

 Bottom line:

 The course is fun when students are engaged and ask
questions

 The course is dull when students are silent

What we will learn (1)
 Roles of an operating system

 Fundamental principles of operating system design and
kernel implementation

 Key features of operating systems of practical
importance

 The course content is not specific to a particular OS

 Many OSes do things in similar way, but they also have key

differences

 We will often reference Unix derivatives (Mac OS, Linux, iOS,

Android, ...) and Windows

 We will mention ”historical” OSes whenever relevant

 We will not study special-purpose OSes (e.g., real-time,

network operating systems, ...)

What we will learn (2)
 Fundamental components and principles of

modern operating systems:

 Processes and Threads Management 
Scheduling

 Synchronization (barely scratching the surface here)

 Memory and Virtual Memory Management

 Storage and, if time, File Systems

 We will have several programming assignments
are are more about “using” the OS than about
“implementing” the OS

 i.e., what most of you will need most in your profession

ICS332 and the ICS Curriculum

ICS 332

ICS332 and the ICS Curriculum

ICS 332

ICS 312/331

Hardware

Assembly Programming

ICS332 and the ICS Curriculum

ICS 332

ICS 312/331

ICS
141/241/311

Discrete-Math

Algorithms

ICS332 and the ICS Curriculum

ICS 332

ICS 312/331

ICS
141/241/311

ICS 351

Networks

ICS332 and the ICS Curriculum

ICS 332

ICS 312/331

ICS
141/241/311

ICS 351

ICS 355

Security

ICS332 and the ICS Curriculum

ICS 332

ICS 312/331

ICS
141/241/311

ICS 351

ICS 355

ICS 432
Concurrent

Programming

Course Website
 Located at:

 https://www.chadmorita.com/ics332s24

 Organized as Modules

 All lecture notes as PDF files

 Pointers to useful on-line material

 All assignments

 A link to the Syllabus

 Which we’re going over now in these slides

 Let’s look at the Web site...

https://www.chadmorita.com/ics332s24

Textbook
 Operating Systems: Three Easy Pieces (a.k.a. OSTEP)

1.00 by Arpaci-Dusseau, R. H. and Arpaci-Dusseau, A. C

 Freely available!

 Lectures are tightly connected to particular chapters
therein

 There will be reading assignments from this textbook, as
indicated on the lecture notes

 Up to you whether you prefer to read them before or
after our lectures....

 Some exam questions and assignments will be directly
from or inspired by the textbook

 There are several classic texts for Operating Systems
(shown in the “syllabus” page on the course Web site)

https://pages.cs.wisc.edu/~remzi/OSTEP/

 Course Content

 In spite of my best efforts it happens that the
course Web site could have small problems
(typos, missing link, etc.)

 Anytime you see anything strange/broken on
the Web site, please let me know right away!

Grading

 Two exams (35%)

 One midterm exam

 One final exam

 Quizzes (15%)

 Roughly every week

 Homework assignments (50%)

 Read the syllabus’ statement about “academic

dishonesty”

Quizzes

 Roughly one quiz a week

 Quizzes will be unannounced

Homework Assignments (1)

 All assignments must be turned in
electronically using Laulima by 11:55PM HST
on the day the assignment is due

 Scanned hand-written assignments not

allowed

 Late Assignments

 10% penalty for up to 24 hours of lateness

 A grade of zero for more than 24 hours of lateness

 e.g., if the due date is 3/10, an assignment turned

in at 1AM on 3/11 will be penalized by 10%, and
given a zero if turned in at 5PM on 3/12

Homework Assignments (2)

 If Laulima is down, just e-mail us (me and the
TA) your submission immediately (don’t send
an e-mail that says “Laulima is down what
should I do?” Which we’ll only see the day
after)

 After submitting double-check what you
submitted!

 “Oops, I submitted an empty file... here is
what I really meant to submit yesterday”
will not be accepted

Homework Assignments (3)

 All assignments are individual (not group)
assignments

 Some assignments will be pencil-and-paper
that require no programming

 But may require the use of a Linux box to observe
things

 Some assignments are programming assignments

 Write code and/or report on code execution

 Pencil-and-paper and programming assignments
can overlap in time

Homework Assignments (4)

 Instructor/TA will not answer assignment-
related e-mails on the day the assignment is
due!

Programming Assignments (1)
 Java 8 or later, some C, some scripting

 Some programming assignments can indifferently be

implemented on Windows, Mac OS, or Linux, others
will require Linux or Mac OS, and yet others will
require Linux.

 You can use your own machine (or a machine in a
lab) for the assignments, using whatever editor or
IDE you want

 BUT you must test/run your code on a Linux (Virtual)
machine

 Because that’s what we’ll use to testing/grading

 One source of errors is Windows (“\”, ”;”) vs. Linux (“/”, ”:”)

Programming Assignments (2)
 Each programming assignment has specifications and

examples

 Command-line arguments, file names, etc.

 If command-line arguments are not correct, then your

programs have to exit gracefully

 If you find specifications unclear, let us know right away

 Non conforming with these specifications makes us less
tolerant (and sometimes non-tolerant) in terms of
grading

 We will not go into your code to fix it;

 You will lose points for not following the specifications

 Following specifications and writing robust code will be a
HUGE part of your professional lives

The Linux CLI (Shell)
 Knowledge of the UNIX/Linux CLI (Shell) is needed in this course

 Show of hand: who feels somewhat familiar with the Unix/Linux
CLI?

 A huge potential side-benefit of taking this course is to become
decent/good with the command-line

 About 25% of students passing the course tell me that they are forever
grateful that they forced themselves to learn/use the Shell

 This is also something we hear from alumni who, once in a job,
“discover” that 99% of back-end systems are Linux based and using the
Shell is a daily activity

 This module (Getting Started) contains some pointers. Let’s look
at them now...

 Many of you really want to look at this material to prepare for upcoming
programming assignments

 In case you’re not convinced …..

ICS Alumnus

Brian Hall

Brian Hall <bdh@briandavidhall.com>
Email him to request access to his Udemy course on the CLI (for free!)

On the Importance of Terminology

 As we learn about Operating Systems we will encounter
a lot of terminology

 Recognizing and using the correct terminology is part of
what we learn in this course

 Knowing the terminology is very important (e.g., in a job
interview, in a professional context)

 So, in class, whenever a student asks a question (which
is highly encouraged!), I might rephrase the question
using proper terminology

 This is not to be annoying or belittling, it’s to make sure we all
come out of this course speaking the language of Operating
Systems (and of Computer Science)

 Of course, terminology will be part of the quizzes/exams

How to not do well in this course?
 Don’t come to class (“the slides are nice”)

 We do a LOT of stuff in class, including live coding, and I give a lot of
explanations, examples

 Start assignments late (“I work better under pressure”)

 OSes are difficult topic

 Starting late seems to be a growing trend, and it’s a problem

 Read the assignment early to subconsciously start thinking about it

 Don’t turn in assignments

 Every semester some students do not turn in assignments and then seem

surprised to fail (not sure what that’s about)

 Just count your points to know where you’re at!

 Don’t come to office hours (“The instructor is scary because he
shows ‘how to no do well in this course?’ slides”)

 After you struggle for a while on something, drop by

 But don’t expect to “camp” in the office hours for the solutions to be given out

 Instructor and TA office hours are an amazing service provided to you, and

yet, they go mostly unused

How to not do well in this course?
 Cheat

 Almost every semester students are caught cheating

 Cheating is bad for many reasons, including hurting the reputation of

ICS graduates!

 This is part of the reason for 50% of the course’s points being exams

 If you are caught cheating or enabling cheating:

 zero on the assignment/exam

 overall grade lowered by a step (i.e., a “B” becomes a “C”)

 reported to UH’s Office of Judicial Affairs (as required)

 Expect that “what can I do for extra credit?” will be met with a
positive response… it won’t

 Don’t study for the quizzes

 “It’s only 7% of the grade”

 But studying for quizzes is a HUGE help to prepare for exams

 When I don’t do quizzes, the average grade drops!

Questions?

 Any questions on the syllabus?

 Any questions on the course in general?

 Do the “participation verification” thing on
Laulima!

Conclusion

 Let’s look at (ungraded) Homework #0…

