Introduction

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

" A
Course Goal

m At this point in your life you:
Have used at least one OS
Know which OS runs on your computer
Know that with the OS you couldn’t use your computer

® Yet, for most of you, the OS is pretty mysterious

® Say your art major friend asks: “What really happens

when | double click on an icon to run an application on my
computer?”

®m Could you give a decent answer besides: “Amazingly, it all
works?”

® As a Computer Scientist it's ok to not know much about
how a car/fridge/airplane works, but it's not ok to be
clueless about how an OS works

" JE
Motivation to Study OSes?

m After all, very few of you will develop an actual OS

m But, most of you will work on complex systems that couple
together many components (not an ICS211 assignment)
® Obvious Motivation: These systems all use the OS heavily
Important to know how to the use the OS as a programmer
Important to know that the OS can and cannot do

Important to know what happens under the cover to understand
bug, security, performance, etc.

m Meta Motivation (you have to trust me on this one): Knowing OS
principles makes you a better software architect and developer

OS concepts are massively re-usable in your own projects
= Asking oneself “how does the OS do this?” Is always useful

= The need for OS knowledge arises regularly for almost
every developer throughout their career

" A
OS in the News

® |f you follow the news, general or tech-oriented, you
know there are quite a few OS-related item each month

Some about new “exciting” features targeted at consumers,
often very vague on details

Some about problems/bugs, typically targeted at computer
professionals

m After taking this course you should be able to
understand these, to at least the OS side to them

Often, understanding to computer architecture is also
needed, as vulnerabilities/attacks are typically at the
software/hardware interface

B | et’'s see two famous examples...

~ What's a kernel?
Ehe New ork imes PCWorld

The kernel inside a chip is basically an invisible process that facilitates the

way apps and functions work on your computer. It has complete control over
The software patches could slow the Yy app y p D

performance of affected machines by 20 to 30 your operating system. Your PC needs to switch between user mode and
percent, said Andres Freund, an independent kernel mode thousands of times a day, making sure instructions and data

software developer who has tested the new Linux flow seamlessly and instantaneously. Here’s how The Register puts it: “Think
code. The researchers who discovered the flaws

voiced similar concerns m e a/n e giSter®

Biting the hand that feeds IT

Via Skype

‘ - Think of the kernel as God sitting on a cloud, looking down on Earth. It's
- : there, and no normal being can see it, yet they can pray to it.

These KPTI patches move the kernel into a completely separate address
space, so it's not just invisible to a running process, it's not even there at
all. Really, this shouldn't be needed, but clearly there is a flaw in Intel's

silicon that allows kernel access protections to be bypassed in some way.

The exact bug is related to the way that

regular apps and programs can discover the HAW IS RHATE” "] KERNH
contents of protect kernel memory areas. MEM[]RY AL'[:ESS

Kernels in operating systems have complete

DEVELOPING STORY

EXPERTS: ALMOST ALL COMPUTER SYSTEMS AFFECTED K&\

Nikkei A 741.39

NEWS STREAM

THURSDAY. JANUARY 4, 2018 | CHIPOCALYPSE NOW

control over the entire system, and connect applications to the processor, memory, and

b . .
J anua ry 1 8 other hardware inside a computer. There appears to be a flaw in Intel’s processors that lets
e attackers bypass kernel access protections so that regular apps can read the contents of
SpeCt re, kernel memory. To protect against this, Linux programmers have been separating the

kernel's memory away from user processes in what’s being called “Kernel

Meltdown ” Isolation.”

What's a kernel? [2/@V\V/oTale.

FROM IDG

The kernel inside a chip is basically an invisible process that facilitates the

You’ll also be able to spot glaring errors/confusions
in newspaper articles (there is a big one on this slide))

We’ll show this slide again to point them out...

kernel's memory away from user processes in what's being called “Kernel Page Table

Meltdown ” Isolation.”

e

o

LWN
* .net

ews from the source

‘ontent

Veekly Edition
\rchives

earch

(ernel

ecurity

ivents calendar
Jnread comments

WN FAQ
Vrite for us
dition

eturn to the Front
page

C

ﬂ Core scheduling lands in 5.14 [l X +

@ O 8 nttps://w

.net/Articles/861251/

Password:

User: Login|| Subscribe|| Register

Core scheduling lands in 5.14

Benefits for LWN subscribers

The primary benefit from subscribing to LWN is helping to keep us publishing, but, beyond
that, subscribers get immediate access to all site content and access to a number of extra site
features. Please sign up today!

feature makes sense and how i works is warranted. Core scheduling is not for everybody, but it may prove to be quite useful for s

By Jonathan Corbet Thc core scheduling feature has been under discussion for over three years. For those who need it, the wait is over at last; core
July 1,2021 heduling was merged for the 5.14 kernel release. Now that this work has reached a (presumably) final form, a look at why this

user communi

il i (SMT, o1 ") is a hardware feature that implements two or more threads of execution in a single processor, essent]
causing one CPU to look like a set of " slb]mg CPUs. When one sibling is executing, the other must wait. SMT is useful because CPUs often go idle while
waiting for events — usually the arrival of data from memory. While one CPU waits, the other can be executing. SMT does not result in a performance gain
all ,but it is a si p for most.

Simultaneous multithreading (SMT, or
"hyperthreading") is a hardware feature
that implements two or more threads of
execution in a single processor

SMT siblings share almost all of the hardware in the CPU, including the many caches that CPUs maintain. That opens up the possibility that one CPU could
extract data from the other by watching for visible changes in the caches; the Spectre class of hardware vulnerabilities have made this problem far worse, and

there is little to be done about it. About the only way to safely run processes that don't trust each other (with current kernels) is to disable SMT entirely; that is a
prospect that makes a lot of people, cloud-computing providers in particular, distinctly grumpy.

While one might argue that cloud-computing providers are usually grumpy anyway, there is still value in anything that might improve their mood. One possi
would be a way to allow them to enable SMT on their systems without opening up the possibility that their customers may use it to attack each other; that co
be done by ensuring that mutually distrusting processes do not run simultancously in siblings of the same CPU core. Cloud customers often have numerous
processes running; spamming Internet users at scale requires a lot of parallel activity, after all. If those processes can be segregated so that all siblings of any
given core run processes from the same customer, we can be spared the gruesome prospect of one spammer stealing another's target list — or somebody else]
private keys.

Core scheduling can provide this segregation. In abstract terms, cach process is assigned a "cookic” that identifies it in some way; one approach might be to
cach user a unique cookie. The scheduler then enforces a regime where processes can share an SMT core only if they have the same cookie value — only if
trust cach other, in other words.

More specifically, core scheduling is managed with the pretL() system call, which is defined generically as:

int prtl(int option, unsigned long arg2, unsigned long arg3,
unsigned long argd, unsigned long args);

For core-scheduling operations, option is PR_SCHED_CORE, and the rest of the arguments are defined this way:

int prctl(PR_SCHED_CORE, int cs_command, pid_t pid, enum pid_type type,
unsigned long *cookie) ;

There are four possible operations that can be selected with cs_connand:

 PR_SCHED_CORE_CREATE causes the kernel to create a new cookie value and assign it to the process identified by pid. The type argument controls how wi
spread this assignment is; PIDTYPE_PID only changes the identified process, for example, while PIDTYPE_TGID assigns the cookie to the entire thread grou;

the Spectre class of hardware vulnerabilities
have made this problem far worse. About the only

way to safely run processes that don't trust each

other (with current kernels) is to disable SMT
entirely; that is a prospect that makes a lot of
people, cloud-computing providers in particular,
distinctly grumpy.

The cookie argument must be NULL.

® PR_SCHED_CORE_GET retrieves the cookie value for pid, storing it in cookie. Note that there is not much that a user-space process can actually do with a cooki
value; its utility is limited to checking whether two processes have the same cookie.

® PR_SCHED_CORE_SHARE_TO assigns the calling process's cookie value to pid (using type to control the scope as described above).
® PR_SCHED_CORE_SHARE_FROM fetches the cookie from pid and assigns it to the calling process.

Naturally, a process cannot just fetch and assign cookies at will; the usual "can this process call ptrace() on the target” test applics. It is also not possible to
generate cookie values in user space, a restriction that is necessary to ensure that unrelated processes get unique cookie values. By only allowing cookie values
propagate between processes that already have a degree of mutual trust, the kernel prevents a hostile process from setting its own cookie to match that of a targd
process.

Whenever a CPU enters the scheduler, the highest-priority task will be picked to run in the usual way. If core scheduling is in use, though, the next step will be
send an inter-processor interrupt to the sibling CPUs, cach of which will respond by checking the newly scheduled process's cookie value against the value for
process running locally. If need be, the interrupted processor(s) will switch to running a process with an equal cookie, even if the currently running process has

higher priority. If no compatible process exists, the processor will simply go idle until the situation changes. The scheduler will migrate processes between cores
to prevent the forced idling if possible.

Early versions of the code had a si cost for the system as a whole; indeed, it was sometimes worse than just disabling SMT|
altogether, which rather defeated the purpose. The code has been through a number of revisions since then, though, and apparently performs better now. There
will always be a cost, though, to a that will to go idle when runnable processes exist. For that reason core scheduling,
Linus Torvalds put it, "makes little sense to most people”. It can be beneficial, though, in situations where the only alternative is to turn off SMT completely.

While the security use case is driving the pment of core there are other use cases as well. For example, systems running realtime processes
usually must have SMT disabled; you cannot make any response-time guarantees when the CPU has to compete with a sibling for the hardware. Core schedulin|
can ensure that realtime processes get a core to themselves while allowing the rest of the system to use SMT. There are other situations where the ability to
control the mixing of processes on the same core can bring benefits as well.

So, while core scheduling is probably not useful for most Linux users, there are user communities that will be glad that this feature has finally found its way int
the mainline. Adding this sort of to a central, like the scheduler was never going to be casy but, where there is
sufficient determination, a way can be found. The developers involved have certainly carned a cookie for pushing this work to a successful completion.

Index entries for this article
Kernel Releases/5.14

e

Whenever a CPU enters the scheduler, the
highest-priority task will be picked to run in
the usual way. If core scheduling is in use,
though, the next step will be to send an
inter-processor interrupt to the sibling CPUs,
each of which will respond by checking the
newly scheduled process's cookie value
against the value for the process running

Kernel or¢

(Log.in to post comments)

Core scheduling lands in 5.14
Posted Jul 1,2021 19:05 UTC (Thu) by bluca (subscriber, #118303) [Link]

Is there any particular reason why this cannot be set at the cgroup level, rather than having yet-another-knob userspace has to deal with?

Reply to this comment

Control groups
Posted Jul 1,2021 19:07 UTC (Thu) by corbet (editor, #1) [Link]

t]

Core scheduling lands in 5.14 [L X +

Iwn.net,

We’ll learn about scheduling as done by the kernel,
we’ll see what hyper threading is, and given the

Meltdown/Spectre vulnerabilities, we’ll easily
understand how this approach works

"
Disclaimer (1)

m \Wouldn't it be great for us to develop an OS during the semester

m Sadly, it's not feasible:

Too hard, time-consuming, programming-heavy for most students at this
stage in their education, especially students who may struggle with C

Or at least given the expected number of hours a student should put into
an undergraduate course...
® As a result, undergraduate OS courses are often less “hands-on”
than what some students expect

Typically a few of you come into this thinking we’re going to do awesome
hacks in the Linux kernel....and will be disappointed

m |[f your dream is to get your hands dirty with the OS kernel you can:

Do an internship at a company that does low level / OS-related work, do an
OS-related Google Summer of code, ..

Take the OS graduate course

Do it on your own (each semester there is at least one student who does this
and there are tons of on-line resources!)

"
Disclaimer (2)

® | am not an “OS geek”

m |f you've read the source code of some OS, if you have
worked on an OS (internship), if you have any useful
knowledge, you are very welcome to share with the
class

® |'m always happy to have course contents evolve
dynamically based on students suggested topics within
some reasonable bounds

® This said, the class is more on general principles than
specific implementations (since those change often, as
we will see)

You can learn a lot about OSes without necessarily spending
hours looking at OS code

" J
Teaching OS is not easy

m A significant part of the material is of the “here is how it
works and why it's a good idea” kind

Precisely because it's not feasible to have the full-fledged
hands-on experience at the undergraduate level

Don’t fear, there will be plenty of programming / hands-on
activities in this course

® Although | try to make the course as interactive as
possible, there is just a limit to what any instructor can
do for some of this material at the undergraduate level

m Bottom line:

The course is fun when students are engaged and ask
guestions

The course is dull when students are silent

"
What we will learn (1)

® Roles of an operating system

® Fundamental principles of operating system design and
kernel implementation

m Key features of operating systems of practical
Importance
The course content is not specific to a particular OS

Many OSes do things in similar way, but they also have key
differences

We will often reference Unix derivatives (Mac OS, Linux, iOS,
Android, ...) and Windows

We will mention "historical” OSes whenever relevant

We will not study special-purpose OSes (e.g., real-time,
network operating systems, ...)

"
What we will learn (2)

® Fundamental components and principles of
modern operating systems:

Processes and Threads Management
Scheduling

Synchronization (barely scratching the surface here)
Memory and Virtual Memory Management
Storage and, if time, File Systems

® \Ve will have several programming assignments
are are more about “using” the OS than about
“implementing” the OS

l.e., what most of you will need most in your profession

" A
ICS332 and the ICS Curriculum

" A
ICS332 and the ICS Curriculum

Hardware
Assembly Programming

312/331

'_
ICS332 and the ICS Curriculum

Discrete-Math

Algorithms

'—
ICS332 and the ICS Curriculum

Networks

'—
ICS332 and the ICS Curriculum

Security

'—
ICS332 and the ICS Curriculum

Concurrent
Programming

" A
Course Website

m | ocated at:
https://www.chadmorita.com/ics332s24
® Organized as Modules

All lecture notes as PDF files
Pointers to useful on-line material
All assignments
A link to the Syllabus
= \Which we’re going over now in these slides

m | et’s look at the Web site...

https://www.chadmorita.com/ics332s24

" A
Texthook

m Operating Systems: Three Easy Pieces (a.k.a. OSTEP)
1.00 by Arpaci-Dusseau, R. H. and Arpaci-Dusseau, A. C

Freely available!

m | ectures are tightly connected to particular chapters
therein

® There will be reading assignments from this textbook, as
iIndicated on the lecture notes

Up to you whether you prefer to read them before or
after our lectures....

B Some exam questions and assignments will be directly
from or inspired by the textbook

B There are several classic texts for Operating Systems
(shown in the “syllabus” page on the course Web site)

https://pages.cs.wisc.edu/~remzi/OSTEP/

" A
Course Content

® |n spite of my best efforts it happens that the
course Web site could have small problems
(typos, missing link, etc.)

m Anytime you see anything strange/broken on
the Web site, please let me know right away!

"
Grading

® Two exams (35%)
One midterm exam
One final exam
B Quizzes (15%)
Roughly every week
® Homework assignments (50%)

m Read the syllabus’ statement about "academic
dishonesty”

" A
Quizzes

® Roughly one quiz a week
B Quizzes will be unannounced

"
Homework Assignments (1)

m All assignments must be turned in
electronically using Laulima by 11:55PM HST
on the day the assignment is due

Scanned hand-written assignments not
allowed

m | ate Assignments
10% penalty for up to 24 hours of lateness
A grade of zero for more than 24 hours of lateness

e.g., if the due date is 3/10, an assignment turned
in at 1AM on 3/11 will be penalized by 10%, and
given a zero if turned in at 5PM on 3/12

"
Homework Assignments (2)

® |f Laulima is down, just e-mail us (me and the
TA) your submission immediately (don’t send
an e-mail that says “Laulima is down what
should | do?” Which we’'ll only see the day
after)

m After submitting double-check what you
submitted!

"Oops, | submitted an empty file... here is
what | really meant to submit yesterday”
will not be accepted

" J
Homework Assignments (3)

m All assignments are individual (not group)
assignments

B Some assignments will be pencil-and-paper
that require no programming
But may require the use of a Linux box to observe
things
B Some assignments are programming assignments
Write code and/or report on code execution

® Pencil-and-paper and programming assignments
can overlap in time

" J—
Homework Assignments (4)

m |nstructor/TA will not answer assignment-
related e-mails on the day the assignment is
due!

"
Programming Assignments (1)

m Java 8 or later, some C, some scripting

B Some programming assignments can indifferently be
implemented on Windows, Mac OS, or Linux, others
will require Linux or Mac OS, and yet others will
require Linux.

® You can use your own machine (or a machine in a
lab) for the assignments, using whatever editor or
IDE you want

® BUT you must test/run your code on a Linux (Virtual)
machine

Because that's what we’ll use to testing/grading
One source of errors is Windows (“\", ;") vs. Linux (*/7, ™.")

"
Programming Assignments (2)

® Each programming assignment has specifications and
examples
Command-line arguments, file names, etc.

If command-line arguments are not correct, then your
programs have to exit gracefully

If you find specifications unclear, let us know right away

® Non conforming with these specifications makes us less
tolerant (and sometimes non-tolerant) in terms of
grading
We will not go into your code to fix it;
You will lose points for not following the specifications

® Following specifications and writing robust code will be a
HUGE part of your professional lives

"
The Linux CLI (Shell)

®m Knowledge of the UNIX/Linux CLI (Shell) is needed in this course

B Show of hand: who feels somewhat familiar with the Unix/Linux
CLI?

B A huge potential side-benefit of taking this course is to become
decent/good with the command-line

About 25% of students passing the course tell me that they are forever
grateful that they forced themselves to learn/use the Shell

This is also something we hear from alumni who, once in a job,
“discover” that 99% of back-end systems are Linux based and using the
Shell is a daily activity

® This module (Getting Started) contains some pointers. Let's look
at them now...

Many of you really want to look at this material to prepare for upcoming
programming assignments

® |n case you're not convinced

ICS Alumnus
Brian Hall

Brian Hall <bdh@briandavidhall.com>
Email him to request access to his Udemy course on the CLI (for free!)

" J
On the Importance of Terminology

®m As we learn about Operating Systems we will encounter
a lot of terminology

®m Recognizing and using the correct terminology is part of
what we learn in this course

® Knowing the terminology is very important (e.g., in a job
interview, in a professional context)

® S50, in class, whenever a student asks a question (which
Is highly encouraged!), | might rephrase the question
using proper terminology

This is not to be annoying or belittling, it's to make sure we all
come out of this course speaking the language of Operating
Systems (and of Computer Science)

m Of course, terminology will be part of the quizzes/exams

How to not do well in this course?

® Don’t come to class (“the slides are nice”)

We do a LOT of stuff in class, including live coding, and | give a lot of
explanations, examples

m Start assignments late (“l work better under pressure”)
OSes are difficult topic
Starting late seems to be a growing trend, and it's a problem
Read the assignment early to subconsciously start thinking about it
® Don’t turn in assignments

Every semester some students do not turn in assignments and then seem
surprised to fail (not sure what that’s about)
Just count your points to know where you're at!
® Don’t come to office hours (“The instructor is scary because he
shows ‘how to no do well in this course?’ slides”)
After you struggle for a while on something, drop by
But don’t expect to “camp” in the office hours for the solutions to be given out

Instructor and TA office hours are an amazing service provided to you, and
yet, they go mostly unused

" A
How to not do well in this course?

® Cheat

Almost every semester students are caught cheating

Cheating is bad for many reasons, including hurting the reputation of
ICS graduates!

This is part of the reason for 50% of the course’s points being exams
If you are caught cheating or enabling cheating:

zero on the assignment/exam

overall grade lowered by a step (i.e., a “B” becomes a “C”)

reported to UH’s Office of Judicial Affairs (as required)

m Expect that “what can | do for extra credit?” will be met with a
positive response... it won’t

® Don’t study for the quizzes
“It's only 7% of the grade”
But studying for quizzes is a HUGE help to prepare for exams
When | don’t do quizzes, the average grade drops!

" JE
Questions?
® Any questions on the syllabus?

® Any questions on the course in general?

® Do the “participation verification” thing on
Laulima!

" A
Conclusion

m | et's look at (ungraded) Homework #0...

