
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Hard Disk Drives
(HDDs)

HDDs? Isn’t it all SSDs Nowadays?

 Most likely, most of us have SSDs, not HDDs, in our
personal laptop/desktop computers

 Each year, increasingly more SSDs are shipped than HDDs
 So, yes, soon HDDs will likely be mostly phased out

 Whenever the $/byte of SSDs gets lower than that of HDDs
 Some think that will be around 2025, some say 2028, take your

pick of whatever predictions are given by tech journal/blog/sites/
companies

 That doesn’t mean that all HDDs will self destruct, but production
could stop by 2030…

 However, HDDs are still widely used today, and account for
a larger share of the worldwide storage capacity than SSDs

HDD Structure

Platters, Tracks, Sectors
 A disk has

multiple platters
 Each platter has

multiple tracks
 Each track has

multiple sectors
 Each sector

stores 512 bytes
of data, that can
be read/written
atomically by the
HDD’s controller

Platters, Tracks, Sectors
4 HARD DISK DRIVES

0

11

10
9

8

7

6

5

4
3

2

1

12

23

22
21

20

19

18

17

16
15

14

13

24

35

34
33

32

31

30

29

28
27

26

25

Spindle

Rotates this way

SeekR
em

ai
ni

ng
 ro

ta
tio

n

3

2

1
0

11

10

9

8

7
6

5

4

15

14

13
12

23

22

21

20

19
18

17

16

27

26

25
24

35

34

33

32

31
30

29

28

Spindle

Rotates this way

Figure 37.3: Three Tracks Plus A Head (Right: With Seek)

next set of sectors (12 through 23), and the outermost track contains the
first sectors (0 through 11).

To understand how the drive might access a given sector, we now trace
what would happen on a request to a distant sector, e.g., a read to sector
11. To service this read, the drive has to first move the disk arm to the cor-
rect track (in this case, the outermost one), in a process known as a seek.
Seeks, along with rotations, are one of the most costly disk operations.

The seek, it should be noted, has many phases: first an acceleration
phase as the disk arm gets moving; then coasting as the arm is moving
at full speed, then deceleration as the arm slows down; finally settling as
the head is carefully positioned over the correct track. The settling time
is often quite significant, e.g., 0.5 to 2 ms, as the drive must be certain to
find the right track (imagine if it just got close instead!).

After the seek, the disk arm has positioned the head over the right
track. A depiction of the seek is found in Figure 37.3 (right).

As we can see, during the seek, the arm has been moved to the desired
track, and the platter of course has rotated, in this case about 3 sectors.
Thus, sector 9 is just about to pass under the disk head, and we must
only endure a short rotational delay to complete the transfer.

When sector 11 passes under the disk head, the final phase of I/O
will take place, known as the transfer, where data is either read from or
written to the surface. And thus, we have a complete picture of I/O time:
first a seek, then waiting for the rotational delay, and finally the transfer.

Some Other Details

Though we won’t spend too much time on it, there are some other inter-
esting details about how hard drives operate. Many drives employ some
kind of track skew to make sure that sequential reads can be properly
serviced even when crossing track boundaries. In our simple example
disk, this might appear as seen in Figure 37.4 (page 5).

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG

 A disk has
multiple platters

 Each platter has
multiple tracks

 Each track has
multiple sectors

 Each sector
stores 512 bytes
of data, that can
be read/written
atomically by the
HDD’s controller a platter

ar
m

Platters, Tracks, Sectors
4 HARD DISK DRIVES

0

11

10
9

8

7

6

5

4
3

2

1

12

23

22
21

20

19

18

17

16
15

14

13

24

35

34
33

32

31

30

29

28
27

26

25

Spindle

Rotates this way

SeekR
em

ai
ni

ng
 ro

ta
tio

n

3

2

1
0

11

10

9

8

7
6

5

4

15

14

13
12

23

22

21

20

19
18

17

16

27

26

25
24

35

34

33

32

31
30

29

28

Spindle

Rotates this way

Figure 37.3: Three Tracks Plus A Head (Right: With Seek)

next set of sectors (12 through 23), and the outermost track contains the
first sectors (0 through 11).

To understand how the drive might access a given sector, we now trace
what would happen on a request to a distant sector, e.g., a read to sector
11. To service this read, the drive has to first move the disk arm to the cor-
rect track (in this case, the outermost one), in a process known as a seek.
Seeks, along with rotations, are one of the most costly disk operations.

The seek, it should be noted, has many phases: first an acceleration
phase as the disk arm gets moving; then coasting as the arm is moving
at full speed, then deceleration as the arm slows down; finally settling as
the head is carefully positioned over the correct track. The settling time
is often quite significant, e.g., 0.5 to 2 ms, as the drive must be certain to
find the right track (imagine if it just got close instead!).

After the seek, the disk arm has positioned the head over the right
track. A depiction of the seek is found in Figure 37.3 (right).

As we can see, during the seek, the arm has been moved to the desired
track, and the platter of course has rotated, in this case about 3 sectors.
Thus, sector 9 is just about to pass under the disk head, and we must
only endure a short rotational delay to complete the transfer.

When sector 11 passes under the disk head, the final phase of I/O
will take place, known as the transfer, where data is either read from or
written to the surface. And thus, we have a complete picture of I/O time:
first a seek, then waiting for the rotational delay, and finally the transfer.

Some Other Details

Though we won’t spend too much time on it, there are some other inter-
esting details about how hard drives operate. Many drives employ some
kind of track skew to make sure that sequential reads can be properly
serviced even when crossing track boundaries. In our simple example
disk, this might appear as seen in Figure 37.4 (page 5).

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG

a track

 A disk has
multiple platters

 Each platter has
multiple tracks

 Each track has
multiple sectors

 Each sector
stores 512 bytes
of data, that can
be read/written
atomically by the
HDD’s controller

ar
m

Platters, Tracks, Sectors
4 HARD DISK DRIVES

0

11

10
9

8

7

6

5

4
3

2

1

12

23

22
21

20

19

18

17

16
15

14

13

24

35

34
33

32

31

30

29

28
27

26

25

Spindle

Rotates this way

SeekR
em

ai
ni

ng
 ro

ta
tio

n

3

2

1
0

11

10

9

8

7
6

5

4

15

14

13
12

23

22

21

20

19
18

17

16

27

26

25
24

35

34

33

32

31
30

29

28

Spindle

Rotates this way

Figure 37.3: Three Tracks Plus A Head (Right: With Seek)

next set of sectors (12 through 23), and the outermost track contains the
first sectors (0 through 11).

To understand how the drive might access a given sector, we now trace
what would happen on a request to a distant sector, e.g., a read to sector
11. To service this read, the drive has to first move the disk arm to the cor-
rect track (in this case, the outermost one), in a process known as a seek.
Seeks, along with rotations, are one of the most costly disk operations.

The seek, it should be noted, has many phases: first an acceleration
phase as the disk arm gets moving; then coasting as the arm is moving
at full speed, then deceleration as the arm slows down; finally settling as
the head is carefully positioned over the correct track. The settling time
is often quite significant, e.g., 0.5 to 2 ms, as the drive must be certain to
find the right track (imagine if it just got close instead!).

After the seek, the disk arm has positioned the head over the right
track. A depiction of the seek is found in Figure 37.3 (right).

As we can see, during the seek, the arm has been moved to the desired
track, and the platter of course has rotated, in this case about 3 sectors.
Thus, sector 9 is just about to pass under the disk head, and we must
only endure a short rotational delay to complete the transfer.

When sector 11 passes under the disk head, the final phase of I/O
will take place, known as the transfer, where data is either read from or
written to the surface. And thus, we have a complete picture of I/O time:
first a seek, then waiting for the rotational delay, and finally the transfer.

Some Other Details

Though we won’t spend too much time on it, there are some other inter-
esting details about how hard drives operate. Many drives employ some
kind of track skew to make sure that sequential reads can be properly
serviced even when crossing track boundaries. In our simple example
disk, this might appear as seen in Figure 37.4 (page 5).

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG

a sector
 A disk has

multiple platters
 Each platter has

multiple tracks
 Each track has

multiple sectors
 Each sector

stores 512 bytes
of data, that can
be read/written
atomically by the
HDD’s controller

Surfaces, Cylinder
 Platters are actually

double-sided with two
surfaces

 Sectors have different
sizes to deal with varying
densities and radial
speeds with respect to the
distance to the spindle

 Outer tracks have in fact
more sectors than inner
tracks

 The set of all tracks that
are the same distance
away from the spindle on
different platters is called
a cylinder

4 HARD DISK DRIVES

0

11

10
9

8

7

6

5

4
3

2

1

12

23

22
21

20

19

18

17

16
15

14

13

24

35

34
33

32

31

30

29

28
27

26

25

Spindle

Rotates this way

SeekR
em

ai
ni

ng
 ro

ta
tio

n

3

2

1
0

11

10

9

8

7
6

5

4

15

14

13
12

23

22

21

20

19
18

17

16

27

26

25
24

35

34

33

32

31
30

29

28

Spindle

Rotates this way

Figure 37.3: Three Tracks Plus A Head (Right: With Seek)

next set of sectors (12 through 23), and the outermost track contains the
first sectors (0 through 11).

To understand how the drive might access a given sector, we now trace
what would happen on a request to a distant sector, e.g., a read to sector
11. To service this read, the drive has to first move the disk arm to the cor-
rect track (in this case, the outermost one), in a process known as a seek.
Seeks, along with rotations, are one of the most costly disk operations.

The seek, it should be noted, has many phases: first an acceleration
phase as the disk arm gets moving; then coasting as the arm is moving
at full speed, then deceleration as the arm slows down; finally settling as
the head is carefully positioned over the correct track. The settling time
is often quite significant, e.g., 0.5 to 2 ms, as the drive must be certain to
find the right track (imagine if it just got close instead!).

After the seek, the disk arm has positioned the head over the right
track. A depiction of the seek is found in Figure 37.3 (right).

As we can see, during the seek, the arm has been moved to the desired
track, and the platter of course has rotated, in this case about 3 sectors.
Thus, sector 9 is just about to pass under the disk head, and we must
only endure a short rotational delay to complete the transfer.

When sector 11 passes under the disk head, the final phase of I/O
will take place, known as the transfer, where data is either read from or
written to the surface. And thus, we have a complete picture of I/O time:
first a seek, then waiting for the rotational delay, and finally the transfer.

Some Other Details

Though we won’t spend too much time on it, there are some other inter-
esting details about how hard drives operate. Many drives employ some
kind of track skew to make sure that sequential reads can be properly
serviced even when crossing track boundaries. In our simple example
disk, this might appear as seen in Figure 37.4 (page 5).

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG

a platter

Arm, Head
 Each platter

surface has a
head, which can
read/modify the
magnetic patterns
on the surface

 All heads are
attached to an arm
that can move
across the surface
to position the
head on a
particular track

4 HARD DISK DRIVES

0

11

10
9

8

7

6

5

4
3

2

1

12

23

22
21

20

19

18

17

16
15

14

13

24

35

34
33

32

31

30

29

28
27

26

25

Spindle

Rotates this way

SeekR
em

ai
ni

ng
 ro

ta
tio

n

3

2

1
0

11

10

9

8

7
6

5

4

15

14

13
12

23

22

21

20

19
18

17

16

27

26

25
24

35

34

33

32

31
30

29

28

Spindle

Rotates this way

Figure 37.3: Three Tracks Plus A Head (Right: With Seek)

next set of sectors (12 through 23), and the outermost track contains the
first sectors (0 through 11).

To understand how the drive might access a given sector, we now trace
what would happen on a request to a distant sector, e.g., a read to sector
11. To service this read, the drive has to first move the disk arm to the cor-
rect track (in this case, the outermost one), in a process known as a seek.
Seeks, along with rotations, are one of the most costly disk operations.

The seek, it should be noted, has many phases: first an acceleration
phase as the disk arm gets moving; then coasting as the arm is moving
at full speed, then deceleration as the arm slows down; finally settling as
the head is carefully positioned over the correct track. The settling time
is often quite significant, e.g., 0.5 to 2 ms, as the drive must be certain to
find the right track (imagine if it just got close instead!).

After the seek, the disk arm has positioned the head over the right
track. A depiction of the seek is found in Figure 37.3 (right).

As we can see, during the seek, the arm has been moved to the desired
track, and the platter of course has rotated, in this case about 3 sectors.
Thus, sector 9 is just about to pass under the disk head, and we must
only endure a short rotational delay to complete the transfer.

When sector 11 passes under the disk head, the final phase of I/O
will take place, known as the transfer, where data is either read from or
written to the surface. And thus, we have a complete picture of I/O time:
first a seek, then waiting for the rotational delay, and finally the transfer.

Some Other Details

Though we won’t spend too much time on it, there are some other inter-
esting details about how hard drives operate. Many drives employ some
kind of track skew to make sure that sequential reads can be properly
serviced even when crossing track boundaries. In our simple example
disk, this might appear as seen in Figure 37.4 (page 5).

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG

a platter

ar
m

head

Hardware Interface
 The HDD’s hardware interface makes it look like it’s just

an array of of 512-byte blocks, indexed from 0 to N
 The HDD’s hardware controller performs the translation

from a single block # to a platter #, a track #, and a
sector #

 This makes it easier to write OS device drivers for HDDs
 The OS sees a HDD as just an array of blocks

 This also allows the HDD’s controller to do all kinds of
work transparently

 i.e., “hide” bad (damaged) sectors by reserving some spares
in each cylinder

 Yay abstraction and virtualization

Performance

 HDDs are “slow” because they have moving
parts

 Furthermore, the performance is highly
depends on the current position of the head

 When doing a read/write operation, the
latency of that operation depends on:
 The rotational delay
 The seek time
 The transfer time

Rotational Delay
 Say the head is already positioned on the track

that contains the sector that should be read/written
 One has to wait until the platter rotates until the

head is positioned over the sector
 The rotational delay depends on the HDD’s RPMs

 Most HDDs today have more or less similar RPMs
around 6,000 RPMs, but up to 15,000 RPMs is possible

 If the disk’s RPM is x, then in the worst case, the
rotational delay is about 1/x minutes
 For 6,000 RPMs, that’s about 10ms
 An eternity from the CPU’s perspective!!

Seek Time
 If the head is not positioned over the right track, then the arm has to

move
 This is called “seeking”

 There are physical/mechanical limits on how fast the arm can move
 There is an acceleration phase, a coasting phase, a deceleration phase,

and a settling phase (to finely adjust the position)
 This is, again, on the order of ms

 Again, an eternity from the CPU’s perspective
 However, if reading data sequentially, as opposed to randomly, few

seeks are needed!
 i.e., which happens due to locality

 The ratio between the speed of random accesses and that of
sequential accesses can be more than 100x!

 Also because there is cache (up to 16MB) that keeps sector data that the
head went over on a track, assuming that these sectors will actually be
needed too

Transfer Time
 Once the head is on the right track and at the

beginning of the right sector, it can beginning
read/write data

 This is the time for the sector to have passed
entirely under the head

 This is typically on the order of microseconds
 Much shorter than the seek time and the rotation delay

In the end:
 TI/O = Tseek + Trotation + Ttransfer

Disk Scheduling
 When processes make I/O requests to the disk, the

OS basically sends to the disk a stream of block #,
which correspond to various sectors in various
tracks

 The disk scheduling question: in which order should
these requests served?

 Given the current position of the head, given a list of
block # to access, which block should be read next?

 The goal is to minimize average access time
 Which is typically achieved by trying to minimize seek

time, but rotation delay also counts

Disk Scheduling: FIFO

 A basic algorithm is First In First Out
 Answer requests in the order they come in

 Let’s run:

./disk-modified.py -G -p FIFO -a 10,33,8,17,4

 The main problem is that this is inefficient,
not serving requests that are “nearby”

Disk Scheduling: SSTF

 A better algorithm is Shortest Seek Time First
 Always answer the request that’s on the nearest

track
 Let’s run:

./disk-modified.py -G -p SSTF -a 10,33,8,17,4

 The main problem is starvation: if there is a
stream of request for the same track, then
some requests will never be served

Disk Scheduling: SATF
 An even better algorithm: Shortest Access Time First
 Takes into account seek time and rotational delay to pick the next

requests
 Given the current position of the head, compute the time to serve each request,

accounting for seeking and rotation; serve the and serve the “quickest” one

12 HARD DISK DRIVES

CRUX: HOW TO ACCOUNT FOR DISK ROTATION COSTS

How can we implement an algorithm that more closely approximates SJF
by taking both seek and rotation into account?

SPTF: Shortest Positioning Time First

Before discussing shortest positioning time first or SPTF scheduling (some-
times also called shortest access time first or SATF), which is the solution
to our problem, let us make sure we understand the problem in more de-
tail. Figure 37.8 presents an example.

In the example, the head is currently positioned over sector 30 on the
inner track. The scheduler thus has to decide: should it schedule sector 16
(on the middle track) or sector 8 (on the outer track) for its next request.
So which should it service next?

The answer, of course, is “it depends”. In engineering, it turns out
“it depends” is almost always the answer, reflecting that trade-offs are
part of the life of the engineer; such maxims are also good in a pinch,
e.g., when you don’t know an answer to your boss’s question, you might
want to try this gem. However, it is almost always better to know why it
depends, which is what we discuss here.

What it depends on here is the relative time of seeking as compared
to rotation. If, in our example, seek time is much higher than rotational
delay, then SSTF (and variants) are just fine. However, imagine if seek is
quite a bit faster than rotation. Then, in our example, it would make more
sense to seek further to service request 8 on the outer track than it would
to perform the shorter seek to the middle track to service 16, which has to
rotate all the way around before passing under the disk head.

0

11

10
9

8

7

6

5

4
3

2

1

12

23

22
21

20

19

18

17

16
15

14

13

24

35

34
33

32

31

30

29

28
27

26

25

Spindle

Rotates this way

Figure 37.8: SSTF: Sometimes Not Good Enough

OPERATING

SYSTEMS

[VERSION 1.01]
WWW.OSTEP.ORG

 Say the head is on sector 30, and there are two
requests to serve: 8 an 16?

 What should we do?
 Depends on the rotation speed and the arm

speed

./disk-modified.py -G -p
SATF -a 10,33,8,17,4

 Has the same starvation problem: if there is
a stream of request that are near each other,
then some requests will never be served

Disk Scheduling Experiments
 We can use our

Python program to do
a simple experimental
campaign (without the
visualization)

 Here are some results! rotate speed = seek speed x 10

rotate speed = seek speed rotate speed = seek speed / 10

Solving Starvation: Elevator
 Elevator Algorithms (SCAN, F-SCAN, etc.)
 Just like an elevator in a building, the head goes from the inner

track to the outer track, back and forth, serving requests along the
way

 The different algorithms are different tweaks of this main idea
 Problem: Requests that come in for the current track may have to

wait until the “elevator” comes back
 This is really not good to minimize request service time

 Just like when you “just missed” the elevator that is now going 30 floors
up before coming back down to where you are

 These algorithms are very far from a shortest job first idea, and
 Also, these algorithms completely ignore rotational delay!

 On modern HDDs, rotation speed and arm speed are both of similar
magnitudes (a few ms)

 So it’s really important to account for both

Disk Scheduling in the OS?

 OSes used to do disk scheduling
 This is really hard because the OS would

need to know all the details of the HDD to do
a good job
 And besides, the block # are virtualized, so the

OS doesn’t know sector numbers
 Nowadays, disk scheduling is implemented in

the HDD’s controller
 So the entire HDD is virtualized, and the API the

device driver exposes to the OS is (essentially)
read(block #) and write(block#, data)

HDD: Formatting
 Physical Formatting

 Divides the disk into sectors
 Fills the disk with a special data structure for each sector

 A header, a data area (512 bytes), and a trailer
 In the header and trailer is the sector number, and extra bits for error-

correcting code (ECC)
 The ECC data is updated by the disk controller on each write and checked on each

read
 If only a few bits of data have been corrupted, the controller can use the ECC to fix

those bits
 Otherwise the sector is now known as “bad” which is reported to the OS

 All done at the factory before shipping
 Logical Formatting

 The OS first partitions the disk into one or more groups of cylinders: the
partitions

 The OS then treats each partition as a separate disk
 Then, file system information is written to the partitions

 See the upcoming File System lecture notes

Bad Blocks
 Sometimes, data on the disk is corrupted and the ECC can’t fix it
 Errors occur due to

 Damage to the platter’s surface
 Defect in the magnetic medium due to wear
 Temporary mechanical error (e.g., head touching the platter)
 Temporary thermal fluctuation

 The OS then gets a notification that the I/O operation has failed
 Upon reboot, the disk controller can be told to replace a bad block by a

spare
 Each time the OS asks for the bad block, it is given the spare instead
 The controller maintains an entire block map
 Yay virtualization again

 Problem: the OS’s view of disk locality may be very different from physical
locality

 Solution #1: Spares in each cylinders and a spare cylinder
 Always try to find spares physically “close” to the bad block

 Solution #2: Shuffle sectors to bring the spare block next to the bad block
 Called sector splitting

Conclusion

 HDDs are still very common
 Their (for now) only real advantage is that

they can have very large capacity at low cost
 But they are not fast and are prone to failures

 HDD hardware controllers do all they can to
improve performance and reliability

 Next up: Solid State Drives (SSDs)

