
Henri Casanova (henric@hawaii.edu)

ICS332

Operating Systems

Swapping

Swapping
 What if we want to start a new process that would not fit in

memory?

 We must save the address space of one (or more) processes

from RAM to a “backing store” (the disk)

 Moving processes back and forth between main memory and

the disk is called swapping

 When a process is swapped back in, it may be put into the

same physical memory space or not

 No problem: programs are relocatable and addresses are virtualized!

 With swapping a process can “be in RAM” or “be on Disk”

 Therefore, a context-switch can involve the disk!!

 Goes from being lightning fast to being sloth-like slow

Swapping and DMA
 With swapping, a process can be kicked out from RAM to disk by the

OS at any time

 This raises a concern with Direct Memory Access (DMA)

 Reminder: with DMA a process says to the system “while I am doing other
things please have the memory system do some memory copy without my
involvement”

 Consider a process that has initiated a DMA operation and is swapped
to disk

 The DMA controller may have no idea and happily continue to write data
(into some other process’ address space, which has replaced that of the
one that was swapped out!)

 Operating systems must deal with this (because DMA is so useful we
can’t live without it)

 One option could be: never swap a process engaged in DMA

 In fact, OSes do something else (“paging”, see next Module)

The Bad News about Swapping
 The disk is sloooooooow (even if it’s an SSD)

 e.g., Assume 1 GiB process address space, a top-of-the-line SSD with 600 MiB/sec
bandwidth: loading a process takes 1.7 seconds and change

 This is an eternity from the perspective of the CPU!

 Several ways to cope with slow disks have been used:

 An OS could swap in/out only processes with small address space (rather than
processes with large address space)

 One can dedicate a disk/partition to swapping (so as to minimize disk seeks on a
hard drive)

 One approach is to just not swap

 Swapping should be an exceptional occurrence

 In older OSes swapping was user-directed (e.g., Windows 3.1)

 Swapping is now often disabled (e.g., on laptops)

 If the normal mode of operation of the system requires frequent swapping, the
system is in trouble (buy more RAM!)

 But perhaps it’s just a temporary rare load spike?

 A key solution is to not swap whole address spaces (“paging”, see next

Module)

Where are we?
 We now have the mechanisms we need:

 We know how to give each process a “slab” of memory that
can fit anywhere in RAM (address virtualization)

 Or one slab per segment

 We know how to swap processes in and out of memory

 We now need a policy to decide how to place each slab
in memory:

 We want to have as many process address spaces in memory
as possible

 We want to minimize swapping

 Key Question: What is a good policy?

Memory Allocation
 Main question: Where should the processes be placed in memory?

 The kernel must keep a list of available memory regions or “holes”

 When a process arrives, before scheduling it, it is placed in a “I

need memory” input queue

 The kernel must make decisions:

 Pick a process from the input queue

 Pick a hole in which the process will be placed (and update the list of

holes)

 Place the process’ PCB into the ready Queue

 This problem is known as the dynamic storage allocation problem

 It’s an on-line problem (we don’t know the future)

 As opposed to off-line (we know the future)

 Objective: Hold as many processes in RAM as possible

Memory Allocation Example

Kernel

Memory
0

100

1000

List of Holes:
100

1000

Input Queue:

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
100

P1 (size: 400)
1000

1000

Input Queue:

P1 arrives

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
500

1000

1000

Input Queue:

P1

500
P1 is loaded

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
500

1000

1000

Input Queue:

P1

500

P2 (size: 100)

P3 (size: 200)

P2 and P3 arrive

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
800

1000

1000

Input Queue:

P1

500
P2

P3
600

800

P2 and P3 are loaded

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
800

1000

1000

Input Queue:

P1

500
P2

P3
600

800

P4 (size: 300)

P4 arrives, and can’t fit

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
800

1000

1000

Input Queue:

P1

500

P3
600

800

P4 (size: 300)

P2 terminates

P4 still cannot fit

500
600

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
800

1000

1000

Input Queue:

P1

500

P3
600

800
P4 (size: 300)

500
600

P5 (size: 100)

P5 arrives and could fit

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
800

1000

1000

Input Queue:

P1

500

P3
600

800
P4 (size: 300)

500
600

P5 (size: 100)

 There is enough space for P4,
but we have fragmentation

 Tempting to pick P5 first?

 It’s a Scheduling problem

Memory Allocation Strategies
 Question 1/3: Which process should be picked?

 First Come First Serve?

 Easy, fast to compute, may delay small processes

 Once again, the supermarket shopping analogy

 Allow smaller processes to jump ahead?

 Slower to compute, favors small processes

 Something more clever?

 Limit the “jumping ahead” (e.g., you cannot jump over more

than 3 processes)

 Look ahead (e.g., instead of making a decision right now, wait

for a few more processes to arrive to get a clearer picture of
what the workload looks like)

 ...

Memory Allocation Strategies

 Question 2/3: Which hole should be picked
for the process that was picked?

 First Fit?

 Pick the first hole that is big enough

 Best Fit?

 Pick the smallest hole that is big enough

 Worst Fit?

 Pick the biggest hole

Memory Allocation Strategies

 Question 3/3: How should the picked process
be placed in the picked hole?

 Top?

 Midle?

 Bottom?

Memory Allocation
 What should we do?

 FCFS + First Fit + Top?

 Jump Ahead + Worst Fit + Bottom?

 We are trying to solve an on-line (don’t know the future) bin-
packing (fit boxes in bins) dynamic (boxes can disappear)
problem: this is hard!

 In fact it’s NP-hard even if we know the future!

 The above combinations are heuristics that hopefully produce

decent solutions

 We can always come up with a scenario for which one

combination is better than all the others

 Even for the seemingly “stupid” FCFS + Worst Fit + Middle

 This is in essence the same story as for CPU scheduling

External Fragmentation
 Recall our objective: hold as many processes as possible in memory

 What makes it difficult is external fragmentation

 We have already seen fragmentation on an example

 There were two small disjoint holes that together would have been big
enough to accommodate a process

 The external fragmentation is defined as the number of holes

 For a given amount of available RAM, we’re always happier with a

single large hole than with several smaller holes

 But, because processes terminate whenever they want to, we cannot

avoid external fragmentation

 What about compaction?

 Just like defragging a hard drive

 But moving processes around means a lot of slow memory copies

 And it creates complicated issues with I/O, DMA, etc.

 So no OS does it

Internal Fragmentation
 Do we want to keep track of tiny holes?

 The list of holes in the kernel is a list of data structures

 Each data structure has: (i) a base address and (ii) a size

 On a 64-bit architecture, this data structure would be 16 bytes

 Plus the pointer to it, we have 24 bytes

 So, I don’t want to use 24 bytes to keep track of, say, a 16-

byte hole!

 In practice, an OS would allocate slabs that are multiples

of some “block size” (e.g., a number of KiB)

 Downside: a process may then not use the whole slab

and some space is wasted

 This is called internal fragmentation

Fragmentation Example (1KiB Blocks)

 Process P1 uses 6.8 KiB out of 7

 Process P2 uses 4.3 KiB out of 5 1-KiB

blocks

 External fragmentation: 

2 holes:

 H1: 3 KiB

 H2: 1 KiB

 Internal fragmentation: 
(1-0.8) + (1-0.3) = 0.2 + 0.7 = 0.9 KiB

 Smaller blocks? lower internal
fragmentation, but more blocks to keep
track of

 Larger blocks? higher internal
fragmentation, but fewer blocks to keep
track of

P1

P2

H1

H2

Conclusion
 Our objective was to allocate a contiguous slab of memory

to each process (or to each process segment) so that their
address spaces can be in RAM

 The mechanisms are “easy”

 Relocatable code with virtualized addresses

 Swapping processes in and out

 But finding a good policy is really hard

 For process picking, hole picking, placement in hole

 It’s hard because fragmentation is unavoidable and wastes
RAM

 One way to make it less hard is to try to have small address
spaces, which we discuss in our next set of lecture notes...

