
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Swapping

Swapping
 What if we want to start a new process that would not fit in

memory?
 We must save the address space of one (or more) processes

from RAM to a “backing store” (the disk)
 Moving processes back and forth between main memory and

the disk is called swapping
 When a process is swapped back in, it may be put into the

same physical memory space or not
 No problem: programs are relocatable and addresses are virtualized!

 With swapping a process can “be in RAM” or “be on Disk”
 Therefore, a context-switch can involve the disk!!

 Goes from being lightning fast to being sloth-like slow

Swapping and DMA
 With swapping, a process can be kicked out from RAM to disk by the

OS at any time
 This raises a concern with Direct Memory Access (DMA)

 Reminder: with DMA a process says to the system “while I am doing other
things please have the memory system do some memory copy without my
involvement”

 Consider a process that has initiated a DMA operation and is swapped
to disk

 The DMA controller may have no idea and happily continue to write data
(into some other process’ address space, which has replaced that of the
one that was swapped out!)

 Operating systems must deal with this (because DMA is so useful we
can’t live without it)

 One option could be: never swap a process engaged in DMA
 In fact, OSes do something else (“paging”, see next Module)

The Bad News about Swapping
 The disk is sloooooooow (even if it’s an SSD)

 e.g., Assume 1 GiB process address space, a top-of-the-line SSD with 600 MiB/sec
bandwidth: loading a process takes 1.7 seconds and change

 This is an eternity from the perspective of the CPU!
 Several ways to cope with slow disks have been used:

 An OS could swap in/out only processes with small address space (rather than
processes with large address space)

 One can dedicate a disk/partition to swapping (so as to minimize disk seeks on a
hard drive)

 One approach is to just not swap
 Swapping should be an exceptional occurrence

 In older OSes swapping was user-directed (e.g., Windows 3.1)
 Swapping is now often disabled (e.g., on laptops)

 If the normal mode of operation of the system requires frequent swapping, the
system is in trouble (buy more RAM!)

 But perhaps it’s just a temporary rare load spike?
 A key solution is to not swap whole address spaces (“paging”, see next

Module)

Where are we?
 We now have the mechanisms we need:

 We know how to give each process a “slab” of memory that
can fit anywhere in RAM (address virtualization)

 Or one slab per segment
 We know how to swap processes in and out of memory

 We now need a policy to decide how to place each slab
in memory:

 We want to have as many process address spaces in memory
as possible

 We want to minimize swapping

 Key Question: What is a good policy?

Memory Allocation
 Main question: Where should the processes be placed in memory?
 The kernel must keep a list of available memory regions or “holes”
 When a process arrives, before scheduling it, it is placed in a “I

need memory” input queue
 The kernel must make decisions:

 Pick a process from the input queue
 Pick a hole in which the process will be placed (and update the list of

holes)
 Place the process’ PCB into the ready Queue

 This problem is known as the dynamic storage allocation problem
 It’s an on-line problem (we don’t know the future)

 As opposed to off-line (we know the future)
 Objective: Hold as many processes in RAM as possible

Memory Allocation Example

Kernel

Memory
0

100

1000

List of Holes:
100

1000

Input Queue:

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
100

P1 (size: 400)
1000

1000

Input Queue:

P1 arrives

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
500

1000

1000

Input Queue:

P1

500
P1 is loaded

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
500

1000

1000

Input Queue:

P1

500

P2 (size: 100)

P3 (size: 200)

P2 and P3 arrive

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
800

1000

1000

Input Queue:

P1

500
P2

P3
600

800

P2 and P3 are loaded

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
800

1000

1000

Input Queue:

P1

500
P2

P3
600

800

P4 (size: 300)

P4 arrives, and can’t fit

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
800

1000

1000

Input Queue:

P1

500

P3
600

800

P4 (size: 300)

P2 terminates
P4 still cannot fit

500
600

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
800

1000

1000

Input Queue:

P1

500

P3
600

800
P4 (size: 300)

500
600

P5 (size: 100)

P5 arrives and could fit

Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
800

1000

1000

Input Queue:

P1

500

P3
600

800
P4 (size: 300)

500
600

P5 (size: 100)

 There is enough space for P4,
but we have fragmentation

 Tempting to pick P5 first?
 It’s a Scheduling problem

Memory Allocation Strategies
 Question 1/3: Which process should be picked?
 First Come First Serve?

 Easy, fast to compute, may delay small processes
 Once again, the supermarket shopping analogy

 Allow smaller processes to jump ahead?
 Slower to compute, favors small processes

 Something more clever?
 Limit the “jumping ahead” (e.g., you cannot jump over more

than 3 processes)
 Look ahead (e.g., instead of making a decision right now, wait

for a few more processes to arrive to get a clearer picture of
what the workload looks like)

 ...

Memory Allocation Strategies

 Question 2/3: Which hole should be picked
for the process that was picked?

 First Fit?
 Pick the first hole that is big enough

 Best Fit?
 Pick the smallest hole that is big enough

 Worst Fit?
 Pick the biggest hole

Memory Allocation Strategies

 Question 3/3: How should the picked process
be placed in the picked hole?

 Top?

 Midle?

 Bottom?

Memory Allocation
 What should we do?

 FCFS + First Fit + Top?
 Jump Ahead + Worst Fit + Bottom?

 We are trying to solve an on-line (don’t know the future) bin-
packing (fit boxes in bins) dynamic (boxes can disappear)
problem: this is hard!

 In fact it’s NP-hard even if we know the future!
 The above combinations are heuristics that hopefully produce

decent solutions
 We can always come up with a scenario for which one

combination is better than all the others
 Even for the seemingly “stupid” FCFS + Worst Fit + Middle

 This is in essence the same story as for CPU scheduling

External Fragmentation
 Recall our objective: hold as many processes as possible in memory
 What makes it difficult is external fragmentation
 We have already seen fragmentation on an example

 There were two small disjoint holes that together would have been big
enough to accommodate a process

 The external fragmentation is defined as the number of holes
 For a given amount of available RAM, we’re always happier with a

single large hole than with several smaller holes
 But, because processes terminate whenever they want to, we cannot

avoid external fragmentation
 What about compaction?

 Just like defragging a hard drive
 But moving processes around means a lot of slow memory copies
 And it creates complicated issues with I/O, DMA, etc.
 So no OS does it

Internal Fragmentation
 Do we want to keep track of tiny holes?

 The list of holes in the kernel is a list of data structures
 Each data structure has: (i) a base address and (ii) a size
 On a 64-bit architecture, this data structure would be 16 bytes
 Plus the pointer to it, we have 24 bytes
 So, I don’t want to use 24 bytes to keep track of, say, a 16-

byte hole!
 In practice, an OS would allocate slabs that are multiples

of some “block size” (e.g., a number of KiB)
 Downside: a process may then not use the whole slab

and some space is wasted
 This is called internal fragmentation

Fragmentation Example (1KiB Blocks)

 Process P1 uses 6.8 KiB out of 7
 Process P2 uses 4.3 KiB out of 5 1-KiB

blocks
 External fragmentation:

2 holes:
 H1: 3 KiB
 H2: 1 KiB

 Internal fragmentation:
(1-0.8) + (1-0.3) = 0.2 + 0.7 = 0.9 KiB

 Smaller blocks? lower internal
fragmentation, but more blocks to keep
track of

 Larger blocks? higher internal
fragmentation, but fewer blocks to keep
track of

P1

P2

H1

H2

Conclusion
 Our objective was to allocate a contiguous slab of memory

to each process (or to each process segment) so that their
address spaces can be in RAM

 The mechanisms are “easy”
 Relocatable code with virtualized addresses
 Swapping processes in and out

 But finding a good policy is really hard
 For process picking, hole picking, placement in hole

 It’s hard because fragmentation is unavoidable and wastes
RAM

 One way to make it less hard is to try to have small address
spaces, which we discuss in our next set of lecture notes...

