Swapping

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)



" JE
Swapping

® \What if we want to start a new process that would not fit in
memory?

® \We must save the address space of one (or more) processes
from RAM to a “backing store” (the disk)

® Moving processes back and forth between main memory and
the disk is called swapping

® \When a process is swapped back in, it may be put into the
same physical memory space or not

No problem: programs are relocatable and addresses are virtualized!

m \With swapping a process can “be in RAM” or “be on Disk”

®m Therefore, a context-switch can involve the disk!!
Goes from being lightning fast to being sloth-like slow



" J
Swapping and DMA

m \With swapping, a process can be kicked out from RAM to disk by the
OS at any time
® This raises a concern with Direct Memory Access (DMA)

Reminder: with DMA a process says to the system “while | am doing other
things please have the memory system do some memory copy without my
involvement”

m Consider a process that has initiated a DMA operation and is swapped
to disk

® The DMA controller may have no idea and happily continue to write data
(into some other process’ address space, which has replaced that of the
one that was swapped out!)

m Operating systems must deal with this (because DMA is so useful we
can’t live without it)

® One option could be: never swap a process engaged in DMA
® |n fact, OSes do something else (“paging”, see next Module)



" J
The Bad News about Swapping

® The disk is sloooooooow (even if it's an SSD)

e.g., Assume 1 GiB process address space, a top-of-the-line SSD with 600 MiB/sec
bandwidth: loading a process takes 1.7 seconds and change

This is an eternity from the perspective of the CPU!
m Several ways to cope with slow disks have been used:

An OS could swap in/out only processes with small address space (rather than
processes with large address space)

One can dedicate a disk/partition to swapping (so as to minimize disk seeks on a
hard drive)

®m One approach is to just not swap
®m Swapping should be an exceptional occurrence
In older OSes swapping was user-directed (e.g., Windows 3.1)

®m Swapping is now often disabled (e.g., on laptops)

If the normal mode of operation of the system requires frequent swapping, the
system is in trouble (buy more RAM!)

But perhaps it’s just a temporary rare load spike?

m A key solution is to not swap whole address spaces (“paging”, see next
Module)



" A
Where are we?

® \We now have the mechanisms we need:

We know how to give each process a “slab” of memory that
can fit anywhere in RAM (address virtualization)

= Or one slab per segment
We know how to swap processes in and out of memory

® \We now need a policy to decide how to place each slab
IN memory:

We want to have as many process address spaces in memory
as possible

We want to minimize swapping

m Key Question: What is a good policy?



"
Memory Allocation

®m Main question: \Where should the processes be placed in memory?
®m The kernel must keep a list of available memory regions or “holes”

®m \WWhen a process arrives, before scheduling it, it is placed in a “I
need memory” input queue
B The kernel must make decisions:
Pick a process from the input queue

Pick a hole in which the process will be placed (and update the list of
holes)

Place the process’ PCB into the ready Queue

m This problem is known as the dynamic storage allocation problem

® |t's an on-line problem (we don’t know the future)
As opposed to off-line (we know the future)

m Objective: Hold as many processes in RAM as possible



"
Memory Allocation Example

100
Memory ) List of Holes:
100
1000
Input Queue:
1000




"
Memory Allocation Example

100
Memory ) List of Holes:
100
 Plarrives |
1000
Input Queue: | P1 (size: 400)
1000



Memory Allocation Example

Memory

Kernel

P1

0
100

500

1000

500
List of Holes:

1000

Input Queue: @



Memory Allocation Example

Memory

Kernel

P1

0
100

500

1000

List of Holes:

(" P2andP3arrive |

Input Queue:

P2 (size: 100)

P3 (size: 200)

500

1000



"
Memory Allocation Example

800
Memory List of Holes:

0
Kernel 1

P1

"2 leoo |_P2andP3areloaded
P3
800

Input Queue:
1000




Memory Allocation Example

Memory

Kernel

P1

P2

P3

0
100

500
600

800

1000

List of Holes:

Input Queue:

P4 (size: 300)

800

1000



"
Memory Allocation Example

M - 800
emory 0 List of Holes:
Kernel
500
600
P1
{ P2terminates |
000 t P4 still cannot fit |
800

Input Queue: | P4 (size: 300)

1000




"
Memory Allocation Example

800
Memory ) List of Holes:
Kernel

500

P1 600

500 { P5 arrives and could fit |
P3
800

P4 (size: 300)

Input Queue:
1000 P5 (size: 100)




Memory Allocation Example

Memory

Kernel

P1

P3

0
100

500
600

800

1000

List of Holes:

Input Queue:

i m There is enough space for P4,
| but we have fragmentation

: m Tempting to pick P5 first?

 ® |t's a Scheduling problem

P4 (size: 300)

PS5 (size: 100)

800

1000

500
600




"
Memory Allocation Strategies

m Question 1/3: Which process should be picked?

® First Come First Serve?
Easy, fast to compute, may delay small processes
Once again, the supermarket shopping analogy

® Allow smaller processes to jump ahead?
Slower to compute, favors small processes

® Something more clever?
Limit the “jumping ahead” (e.g., you cannot jump over more
than 3 processes)
Look ahead (e.g., instead of making a decision right now, wait

for a few more processes to arrive to get a clearer picture of
what the workload looks like)



"
Memory Allocation Strategies

®m Question 2/3: Which hole should be picked
for the process that was picked?

m First Fit?

Pick the first hole that is big enough
m Best Fit?

Pick the smallest hole that is big enough
m \Worst Fit”?

Pick the biggest hole



"
Memory Allocation Strategies

®m Question 3/3: How should the picked process
be placed in the picked hole?

m Top?

m Midle?

m Bottom?




"
Memory Allocation

® \What should we do?
FCFS + First Fit + Top?
Jump Ahead + Worst Fit + Bottom?
® \We are trying to solve an on-line (don’'t know the future) bin-

packing (fit boxes in bins) dynamic (boxes can disappear)
problem: this is hard!

In fact it's NP-hard even if we know the future!

® The above combinations are heuristics that hopefully produce
decent solutions

® \We can always come up with a scenario for which one
combination is better than all the others

Even for the seemingly “stupid” FCFS + Worst Fit + Middle

® This is in essence the same story as for CPU scheduling



" J
External Fragmentation

m Recall our objective: hold as many processes as possible in memory
m \What makes it difficult is external fragmentation

® \\e have already seen fragmentation on an example

There were two small disjoint holes that together would have been big
enough to accommodate a process

® The external fragmentation is defined as the number of holes

® For a given amount of available RAM, we're always happier with a
single large hole than with several smaller holes

m But, because processes terminate whenever they want to, we cannot
avoid external fragmentation
®m \What about compaction?
Just like defragging a hard drive
But moving processes around means a lot of slow memory copies
And it creates complicated issues with /0O, DMA, etc.
So no OS does it



" J
Internal Fragmentation

®m Do we want to keep track of tiny holes?
The list of holes in the kernel is a list of data structures
Each data structure has: (i) a base address and (ii) a size
On a 64-bit architecture, this data structure would be 16 bytes
Plus the pointer to it, we have 24 bytes

So, | don’t want to use 24 bytes to keep track of, say, a 16-
byte hole!

® |n practice, an OS would allocate slabs that are multiples
of some “block size” (e.g., a number of KiB)

®m Downside: a process may then not use the whole slab
and some space is wasted

® This is called internal fragmentation



" JE
Fragmentation Example (1KiB Blocks)

® Process P1 uses 6.8 KiB out of 7
® Process P2 uses 4.3 KiB out of 5 1-KiB

P1 blocks
= External fragmentation:
2 holes:
H1: 3 KiB
H2: 1 KiB
H1

® Internal fragmentation:
(1-0.8) + (1-0.3) = 0.2+ 0.7 = 0.9 KiB

P2 ®m Smaller blocks? lower internal
fragmentation, but more blocks to keep
track of

H2 m | arger blocks? higher internal

fragmentation, but fewer blocks to keep
track of




" A
Conclusion

® QOur objective was to allocate a contiguous slab of memory
to each process (or to each process segment) so that their
address spaces can be in RAM
® The mechanisms are “easy”
Relocatable code with virtualized addresses
Swapping processes in and out
m But finding a good policy is really hard
For process picking, hole picking, placement in hole

® |t's hard because fragmentation is unavoidable and wastes
RAM

® One way to make it less hard is to try to have small address
spaces, which we discuss in our next set of lecture notes...



