
Henri Casanova (henric@hawaii.edu)

ICS332 
Operating Systems 

Swapping



Swapping
 What if we want to start a new process that would not fit in 

memory? 
 We must save the address space of one (or more) processes 

from RAM to a “backing store” (the disk)  
 Moving processes back and forth between main memory and 

the disk is called swapping  
 When a process is swapped back in, it may be put into the 

same physical memory space or not 
 No problem: programs are relocatable and addresses are virtualized!  

 With swapping a process can “be in RAM” or “be on Disk” 
 Therefore, a context-switch can involve the disk!!  

 Goes from being lightning fast to being sloth-like slow 



Swapping and DMA
 With swapping, a process can be kicked out from RAM to disk by the 

OS at any time 
 This raises a concern with Direct Memory Access (DMA)  

 Reminder: with DMA a process says to the system “while I am doing other 
things please have the memory system do some memory copy without my 
involvement”  

 Consider a process that has initiated a DMA operation and is swapped 
to disk  

 The DMA controller may have no idea and happily continue to write data 
(into some other process’ address space, which has replaced that of the 
one that was swapped out!) 

 Operating systems must deal with this (because DMA is so useful we 
can’t live without it)  

 One option could be: never swap a process engaged in DMA 
 In fact, OSes do something else (“paging”, see next Module) 



The Bad News about Swapping
 The disk is sloooooooow (even if it’s an SSD) 

 e.g., Assume 1 GiB process address space, a top-of-the-line SSD with 600 MiB/sec 
bandwidth: loading a process takes 1.7 seconds and change 

 This is an eternity from the perspective of the CPU!  
 Several ways to cope with slow disks have been used:  

 An OS could swap in/out only processes with small address space (rather than 
processes with large address space) 

 One can dedicate a disk/partition to swapping (so as to minimize disk seeks on a 
hard drive)  

 One approach is to just not swap 
 Swapping should be an exceptional occurrence  

 In older OSes swapping was user-directed (e.g., Windows 3.1)  
 Swapping is now often disabled (e.g., on laptops)  

 If the normal mode of operation of the system requires frequent swapping, the 
system is in trouble (buy more RAM!) 

 But perhaps it’s just a temporary rare load spike?  
 A key solution is to not swap whole address spaces (“paging”, see next 

Module)



Where are we?
 We now have the mechanisms we need:  

 We know how to give each process a “slab” of memory that 
can fit anywhere in RAM (address virtualization)  

 Or one slab per segment  
 We know how to swap processes in and out of memory  

 We now need a policy to decide how to place each slab 
in memory:  

 We want to have as many process address spaces in memory 
as possible 

 We want to minimize swapping  

 Key Question: What is a good policy? 



Memory Allocation
 Main question: Where should the processes be placed in memory? 
 The kernel must keep a list of available memory regions or “holes”  
 When a process arrives, before scheduling it, it is placed in a “I 

need memory” input queue 
 The kernel must make decisions:  

 Pick a process from the input queue 
 Pick a hole in which the process will be placed (and update the list of 

holes)  
 Place the process’ PCB into the ready Queue  

 This problem is known as the dynamic storage allocation problem 
 It’s an on-line problem (we don’t know the future)  

 As opposed to off-line (we know the future)  
 Objective: Hold as many processes in RAM as possible 
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Memory Allocation Example
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 There is enough space for P4, 
but we have fragmentation 

 Tempting to pick P5 first? 
 It’s a Scheduling problem



Memory Allocation Strategies
 Question 1/3: Which process should be picked?  
 First Come First Serve?  

 Easy, fast to compute, may delay small processes 
 Once again, the supermarket shopping analogy  

 Allow smaller processes to jump ahead?  
 Slower to compute, favors small processes  

 Something more clever?  
 Limit the “jumping ahead” (e.g., you cannot jump over more 

than 3 processes) 
 Look ahead (e.g., instead of making a decision right now, wait 

for a few more processes to arrive to get a clearer picture of 
what the workload looks like)  

 ... 



Memory Allocation Strategies

 Question 2/3: Which hole should be picked 
for the process that was picked?  

 First Fit? 
 Pick the first hole that is big enough  

 Best Fit? 
 Pick the smallest hole that is big enough  

 Worst Fit? 
 Pick the biggest hole 



Memory Allocation Strategies

 Question 3/3: How should the picked process 
be placed in the picked hole?   

 Top? 

 Midle? 

 Bottom?



Memory Allocation
 What should we do? 

 FCFS + First Fit + Top? 
 Jump Ahead + Worst Fit + Bottom? 

 We are trying to solve an on-line (don’t know the future) bin-
packing (fit boxes in bins) dynamic (boxes can disappear) 
problem: this is hard! 

 In fact it’s NP-hard even if we know the future! 
 The above combinations are heuristics that hopefully produce 

decent solutions  
 We can always come up with a scenario for which one 

combination is better than all the others  
 Even for the seemingly “stupid” FCFS + Worst Fit + Middle 

 This is in essence the same story as for CPU scheduling 



External Fragmentation
 Recall our objective: hold as many processes as possible in memory 
 What makes it difficult is external fragmentation 
 We have already seen fragmentation on an example  

 There were two small disjoint holes that together would have been big 
enough to accommodate a process  

 The external fragmentation is defined as the number of holes  
 For a given amount of available RAM, we’re always happier with a 

single large hole than with several smaller holes  
 But, because processes terminate whenever they want to, we cannot 

avoid external fragmentation 
 What about compaction?  

 Just like defragging a hard drive 
 But moving processes around means a lot of slow memory copies 
 And it creates complicated issues with I/O, DMA, etc. 
 So no OS does it 



Internal Fragmentation
 Do we want to keep track of tiny holes?  

 The list of holes in the kernel is a list of data structures 
 Each data structure has: (i) a base address and (ii) a size 
 On a 64-bit architecture, this data structure would be 16 bytes 
 Plus the pointer to it, we have 24 bytes 
 So, I don’t want to use 24 bytes to keep track of, say, a 16-

byte hole!  
 In practice, an OS would allocate slabs that are multiples 

of some “block size” (e.g., a number of KiB)  
 Downside: a process may then not use the whole slab 

and some space is wasted  
 This is called internal fragmentation



Fragmentation Example (1KiB Blocks)

 Process P1 uses 6.8 KiB out of 7  
 Process P2 uses 4.3 KiB out of 5 1-KiB 

blocks  
 External fragmentation: 

2 holes:  
 H1: 3 KiB 
 H2: 1 KiB  

 Internal fragmentation: 
(1-0.8) + (1-0.3) = 0.2 + 0.7 = 0.9 KiB  

 Smaller blocks? lower internal 
fragmentation, but more blocks to keep 
track of  

 Larger blocks? higher internal 
fragmentation, but fewer blocks to keep 
track of

P1

P2

H1

H2



Conclusion
 Our objective was to allocate a contiguous slab of memory 

to each process (or to each process segment) so that their 
address spaces can be in RAM  

 The mechanisms are “easy”  
 Relocatable code with virtualized addresses 
 Swapping processes in and out  

 But finding a good policy is really hard  
 For process picking, hole picking, placement in hole  

 It’s hard because fragmentation is unavoidable and wastes 
RAM  

 One way to make it less hard is to try to have small address 
spaces, which we discuss in our next set of lecture notes... 


