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Swapping
 What if we want to start a new process that would not fit in 

memory?

 We must save the address space of one (or more) processes 

from RAM to a “backing store” (the disk) 

 Moving processes back and forth between main memory and 

the disk is called swapping 

 When a process is swapped back in, it may be put into the 

same physical memory space or not

 No problem: programs are relocatable and addresses are virtualized! 


 With swapping a process can “be in RAM” or “be on Disk”

 Therefore, a context-switch can involve the disk!! 


 Goes from being lightning fast to being sloth-like slow 



Swapping and DMA
 With swapping, a process can be kicked out from RAM to disk by the 

OS at any time

 This raises a concern with Direct Memory Access (DMA) 


 Reminder: with DMA a process says to the system “while I am doing other 
things please have the memory system do some memory copy without my 
involvement” 


 Consider a process that has initiated a DMA operation and is swapped 
to disk 


 The DMA controller may have no idea and happily continue to write data 
(into some other process’ address space, which has replaced that of the 
one that was swapped out!)


 Operating systems must deal with this (because DMA is so useful we 
can’t live without it) 


 One option could be: never swap a process engaged in DMA

 In fact, OSes do something else (“paging”, see next Module) 



The Bad News about Swapping
 The disk is sloooooooow (even if it’s an SSD)


 e.g., Assume 1 GiB process address space, a top-of-the-line SSD with 600 MiB/sec 
bandwidth: loading a process takes 1.7 seconds and change


 This is an eternity from the perspective of the CPU! 

 Several ways to cope with slow disks have been used: 


 An OS could swap in/out only processes with small address space (rather than 
processes with large address space)


 One can dedicate a disk/partition to swapping (so as to minimize disk seeks on a 
hard drive) 


 One approach is to just not swap

 Swapping should be an exceptional occurrence 


 In older OSes swapping was user-directed (e.g., Windows 3.1) 

 Swapping is now often disabled (e.g., on laptops) 


 If the normal mode of operation of the system requires frequent swapping, the 
system is in trouble (buy more RAM!)


 But perhaps it’s just a temporary rare load spike? 

 A key solution is to not swap whole address spaces (“paging”, see next 

Module)



Where are we?
 We now have the mechanisms we need: 


 We know how to give each process a “slab” of memory that 
can fit anywhere in RAM (address virtualization) 


 Or one slab per segment 

 We know how to swap processes in and out of memory 


 We now need a policy to decide how to place each slab 
in memory: 


 We want to have as many process address spaces in memory 
as possible


 We want to minimize swapping 


 Key Question: What is a good policy? 



Memory Allocation
 Main question: Where should the processes be placed in memory?

 The kernel must keep a list of available memory regions or “holes” 

 When a process arrives, before scheduling it, it is placed in a “I 

need memory” input queue

 The kernel must make decisions: 


 Pick a process from the input queue

 Pick a hole in which the process will be placed (and update the list of 

holes) 

 Place the process’ PCB into the ready Queue 


 This problem is known as the dynamic storage allocation problem

 It’s an on-line problem (we don’t know the future) 


 As opposed to off-line (we know the future) 

 Objective: Hold as many processes in RAM as possible 
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Memory Allocation Example
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Memory Allocation Example
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Memory Allocation Example
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Memory Allocation Example
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Memory Allocation Example

Kernel

Memory
0

100

List of Holes:
800

1000

1000

Input Queue:

P1

500

P3
600

800

P4 (size: 300)

P2 terminates

P4 still cannot fit

500
600



Memory Allocation Example
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Memory Allocation Example
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 There is enough space for P4, 
but we have fragmentation


 Tempting to pick P5 first?

 It’s a Scheduling problem



Memory Allocation Strategies
 Question 1/3: Which process should be picked? 

 First Come First Serve? 


 Easy, fast to compute, may delay small processes

 Once again, the supermarket shopping analogy 


 Allow smaller processes to jump ahead? 

 Slower to compute, favors small processes 


 Something more clever? 

 Limit the “jumping ahead” (e.g., you cannot jump over more 

than 3 processes)

 Look ahead (e.g., instead of making a decision right now, wait 

for a few more processes to arrive to get a clearer picture of 
what the workload looks like) 


 ... 



Memory Allocation Strategies

 Question 2/3: Which hole should be picked 
for the process that was picked? 


 First Fit?

 Pick the first hole that is big enough 


 Best Fit?

 Pick the smallest hole that is big enough 


 Worst Fit?

 Pick the biggest hole 



Memory Allocation Strategies

 Question 3/3: How should the picked process 
be placed in the picked hole?  


 Top?


 Midle?


 Bottom?



Memory Allocation
 What should we do?


 FCFS + First Fit + Top?

 Jump Ahead + Worst Fit + Bottom?


 We are trying to solve an on-line (don’t know the future) bin-
packing (fit boxes in bins) dynamic (boxes can disappear) 
problem: this is hard!


 In fact it’s NP-hard even if we know the future!

 The above combinations are heuristics that hopefully produce 

decent solutions 

 We can always come up with a scenario for which one 

combination is better than all the others 

 Even for the seemingly “stupid” FCFS + Worst Fit + Middle


 This is in essence the same story as for CPU scheduling 



External Fragmentation
 Recall our objective: hold as many processes as possible in memory

 What makes it difficult is external fragmentation

 We have already seen fragmentation on an example 


 There were two small disjoint holes that together would have been big 
enough to accommodate a process 


 The external fragmentation is defined as the number of holes 

 For a given amount of available RAM, we’re always happier with a 

single large hole than with several smaller holes 

 But, because processes terminate whenever they want to, we cannot 

avoid external fragmentation

 What about compaction? 


 Just like defragging a hard drive

 But moving processes around means a lot of slow memory copies

 And it creates complicated issues with I/O, DMA, etc.

 So no OS does it 



Internal Fragmentation
 Do we want to keep track of tiny holes? 


 The list of holes in the kernel is a list of data structures

 Each data structure has: (i) a base address and (ii) a size

 On a 64-bit architecture, this data structure would be 16 bytes

 Plus the pointer to it, we have 24 bytes

 So, I don’t want to use 24 bytes to keep track of, say, a 16-

byte hole! 

 In practice, an OS would allocate slabs that are multiples 

of some “block size” (e.g., a number of KiB) 

 Downside: a process may then not use the whole slab 

and some space is wasted 

 This is called internal fragmentation



Fragmentation Example (1KiB Blocks)

 Process P1 uses 6.8 KiB out of 7 

 Process P2 uses 4.3 KiB out of 5 1-KiB 

blocks 

 External fragmentation: 

2 holes: 

 H1: 3 KiB

 H2: 1 KiB 


 Internal fragmentation: 
(1-0.8) + (1-0.3) = 0.2 + 0.7 = 0.9 KiB 


 Smaller blocks? lower internal 
fragmentation, but more blocks to keep 
track of 


 Larger blocks? higher internal 
fragmentation, but fewer blocks to keep 
track of

P1

P2

H1

H2



Conclusion
 Our objective was to allocate a contiguous slab of memory 

to each process (or to each process segment) so that their 
address spaces can be in RAM 


 The mechanisms are “easy” 

 Relocatable code with virtualized addresses

 Swapping processes in and out 


 But finding a good policy is really hard 

 For process picking, hole picking, placement in hole 


 It’s hard because fragmentation is unavoidable and wastes 
RAM 


 One way to make it less hard is to try to have small address 
spaces, which we discuss in our next set of lecture notes... 


