Operating System

Interfaces

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

OS Interfaces

User Interfaces

API| and standard

Graphical Command-Line libraries

Kernel code

Graphical User Interfaces

m Early 1970s (Xerox PARC research)

® Popularized by Apple’s Macintosh
(1980s)

® Many UNIX users still use the
command-line heavily, while

Windows users usually prefer the
GUI

m Mac OS <10: no CLI, but Mac OS =
10 does: Terminal

m Question: Is the GUI part of the OS
or not?
Windows: YES
MacOS: YES
Linux: NO

"%

File Edit Uiew Special

Size Name
AAAAAAAA

dddddddd
dddddddd

sssssss

e s

B9®Ha 20 =098

"
Command-Line Interfaces (CLI)

® Also known as the Shell

® Provides many built-in commands
On my Mac: man builtin (cd, echo, pwd, which, ...)

m |t is often used to invoke low-level system programs

On UNIX-like systems, often brief one-word executables (1s, ps,
sed, grep, ...)

Not part of the OS, but often installed with it
m |t is often used to invoke user programs

B The distinction between system and user programs is vague
at best and really not useful because it's a matter of
perspective

What about Is? If you're a kernel developer, then it's a high-level

application. If you're a novice Linux user, then you probably think of
it as some “OS thing”...

" J
The System Call (Syscall) API

m System calls, or syscalls, provide the lowest-level interface to the OS

®m GUIs and CLIs (and in fact all programs!) are built on top of the
System Call API

m Often programs will use some library, that uses some library, that
uses some “standard” library, and then uses the system call API

It all boils down to system calls (unless your program does nothing but
compute)

® You can think of your running program as doing one of two things:

Either fetch-decode-execute instructions that you wrote or that are in the
libraries that you use

Or fetch-decode-execute instructions that are in the kernel because your
program placed a system call

m \We will use the system call API (or low-level standard libraries that
use it) in programming assignments
m But turns out you can spy on system call usage...

" JE
Spying on System Calls

® There are tools to “spy on processes” and
see the system calls they place as they
happen!
strace in Linux
dtruss in macOS

ProcMon in Windows
® \WWhy is this useful?

Find bugs, find performance bugs, detect
malware, reverse-engineer code, and learning :)

m | et's look at strace in Linux...

"
strace Example Uses

-i option: shows the value of the Program Counter

strace -i sleep 1

-x option: shows non-ASCII characters in hex
strace -x touch /tmp/foo

-c option: obtain cumulative statistics

mkdir tmp; cd tmp
for a in 'seq 0 9 ; do
for b in 'seq 0 9 ; do
touch ab;
done
done
strace -¢c rm *

-p option: attach to a running process (may require sudo)

strace -p <pid of process> # let’s spy on sshd!

" JE
System calls

® There are many system calls in a typical OS (~300-400 in
Linux)

® Each system call is identified by a unique number, stored in an
internal table called the syscall table

m | et’s look at the ChromiumOS syscall table

Linux kernel, open-source version of ChromeQOS, developed by

Google (support stopped in 2022...ChromeBooks weren'’t a
commercial success)

The system call numbers are in some standard header file (.h)

® There are system calls for everything that you'd expect (to

manage processes, memory, files, devices, communication,
permissions, etc.)

m System calls make it possible to access hardware resources
virtualized by the OS

https://chromium.googlesource.com/chromiumos/docs/+/HEAD/constants/syscalls.md

" J
Timing Programs and System Calls

B The UNIX time command can be used to see

what time a program spends running user code
and what time it spends running kernel code
(i.e., system calls)
Does not have a great resolution, so results can be
weird when timing lightning quick programs
m |t reports:

Real time: The time you experience (also called wall-
clock time, elapsed time, execution time, run time...)

User time: The time spent executing user code
System time: The time spent executing kernel code

"
Measuring System Time

m |_ets use the time command for
Archiving/Compressing some directory
Running du on a large and deep directory
Running jekyll

"
Measuring System Time

m | ets use the time commend for
Archiving/Compressing some directory
Running du on a large and deep directory
Running jekyll
® \We observe: real time # user time + system time
® \What's the missing time?

" J
Measuring System Time

m | ets use the time commend for
Archiving/Compressing some directory
Running du on a large and deep directory
Running jekyll
® \We observe: real time # user time + system time
® \What's the missing time? 1/O!

User System /O

—_
real time

® |/O time could be waiting for the disk, network, keyboard, etc.
® real time = user time + system time + i/o time

" J
System Calls are Expensive

® The OS tries to be fast
Kernel developers are good at writing lean/mean code
m But system calls can be expensive

Especially when they involve some hardware overhead (i.e., waiting for
the disk)

m As a programmer you should use system calls wisely (if you care
about speed at all)

® This can fly in the face of what you learn in the CS curriculum

m Well-known example
ICS111/211: Data structures are great, so use them
BUT, your code may end up calling malloc/free all the time!
So then you want to use arrays

But then everything’'s ugly/cumbersome because an array is such a
restrictive data structure

® The life of the developer is about making difficult compromises

" JE
The System Call API

®m System calls can be complicated to place

® Therefore, there is a system call interface, i.e., a set of useful
functions ,often provided in standard libraries, that are “easier-
to-use wrappers” around the raw system calls e.g., the fork()
“system call” is a simple interface to the clone() system call

e.g., When in C you open a file with fopen (), and fopen () calls
the more complicated open () system call on your behalf

m Often one says “l am placing a system call” even when calling
a higher-level library function

m |f the API is standard then the code can be portable!
Windows: Windows 16, Windows 32, Windows 64 AP
UNIX: POSIX (Portable Operating Systems Interface IEEE-IX)
Java API: The JVM has OS-like functionalities on top of the OS

"
Standard APls: Writing a file

m System Call in C (man 2 write)

Really a low-level library that directly invokes the
system call for you, since one doesn’t simply call a
system call from user code, as we’ll see

ssize t write(int fildes, const void *ptr,
size t nbyte);

m Higher level library in C (man fwrite)

size t fwrite(const void *ptr, size t size,
size t nitems, FILE *stream);

® Java: OutputStream::write (see JavaDoc)

public void write (byte[] b) throws IOException;
Most details are hidden thanks to OO approach

"
Standard APls: Writing a file

Returns a possibly negative
number (-1 means “failure”)

m System Call in C (ma

Really a low-level |i

, since one doesn’t simply call a
rom user code, as we’'ll see

ssize t write(int fildes, const void *ptr,
size t nbyte);

m Higher level library in C (man fwrite)

size t fwrite(const void *ptr, size t size,
size - items, FILE *stream);

® Java: Outpu :write (see Javadoc)
public void write

Most details are hidde

Returns a >=0 number (< size
means failure)

"
Standard APls: Writing a file

m System Call in C (man Takes in a number of bytes

Really a low-level |i
system call for y Ince one doesn’t simply call a
system call fror'user code, as we’ll see

ssize t wpite(int fildes, const void *ptr,
size t nbyte);

m Higher level library in C (man fwrite)

size t fwrite(const void *ptr, size t size,
size t nitems, FILE *stream);

= Java: Outpwwite (see Javadq t)
public void write (\;

_ _ Takes in a number of elements
Most details are hidde andEnelementisize

"
Standard APls: Writing a file

m System Call in C (ma Takes in a file descriptor
number

Really a low-level libr

system call for you, sin¢ p one doesn’t simply call a
system call from user cd/de, as we’ll see

ssize t write(int fildes, const void *ptr,
size t nbyte);

m Higher level library in C (man fwrite)

size t fwrite(const void *ptr, size t size,
size t nitems, FILE *stream);

® Java: OutputStream|\\write (see Javadoc)

public void write (

_ =Y Takes in a higher-level FILE "
Most details are hidde “object”

" B
A Word on the JVM

m The JVMis just a
program

® |t interacts with the OS
using the System Call
API, like any other
program

® |t knows how to
----------- interpret byte code that

JVM Program places calls to the Java
API

® To implement some of
these Java API calls,
the JVM places System
Calls

javac

java

Systems Call API

Kernel

Hardware

" A
Conclusion

m OSes come with interactive interfaces
Shells, GUIs
m All are based on the System Call API
All (useful) programs use this API
Directly or indirectly via standard library calls

® On Linux, the strace tool makes it possible to spy on
how a program uses the System Call API

® On UNIX-ish systems, the time tool makes it possible
to measure time spent in system calls

