
Henri Casanova (henric@hawaii.edu)

ICS332

Operating Systems

What is an OS?

What is an Operating System?
! What would you say to your non-CS-major friend asking

this? Anybody?

! Typical “ok” answer: It is the software layer between the

applications and the hardware because the hardware would
be too difficult for users to use

! Typical “sort of ok” answer: It is “all the code that I don’t
have to write” when I develop software (not quite right since
there are tons of non-OS libraries whose code you don’t
write either)

! Typical wrong “Big Brother / Eye of Sauron” answer: It is the
one program that runs at all times and watches everything

" This is a pervasive but very misled view: the OS is not

a running program

" And there is no need to “reserve” one CPU/core for it

(something you will hear once in a while)

What is an Operating System?
! What would you say to your non-CS-major friend asking this?

Anybody?

! Typical “ok” answer: It is the software layer between the

applications and the hardware because the hardware would be
too difficult for users to use

! Typical “sort of ok” answer: It is “all the code that I don’t have to
write” when I develop software (not quite right since there are
tons of non-OS libraries whose code you don’t write either)

! Typical wrong “Big Brother / Eye of Sauron” answer: It is the one
program that runs at all times and watches everything

" This is a pervasive but misled view: the OS is not a running

program

! Although it starts programs

" Better view: it’s code that gets invoked time and again

" And there is no need to “reserve” one CPU/core for it

(something you will hear once in a while)

What is an Operating System?
! This is not such a simple question

! An OS is a complete software system that manages

access to hardware and makes it possible to run
software applications on that hardware

! A core component of the OS is called the kernel,
which in code and data structure in charge of
managing hardware resources

" And is not a running program

! The kernel acts as layer between application
software and the hardware, and it performs
virtualization…

The OS Virtualizes

! Conceptually, the main role of the OS is
virtualization

" The first of the “three easy pieces” of our textbook

! The term “virtualization” is used in many

contexts

" The Java Virtual Machine (JVM)

" Virtual Machines that one would use in the cloud

! More on this much later in the semester

! In the context of OSes we mean two things:

" Resource abstraction

" Resource allocation

Virtualization: Abstraction
! The OS is a Resource Abstractor

! It defines a set of logical resources that correspond to

hardware/physical resources

! It defines operations on these logical resources

! Typical examples:

Physical Logical Operations

CPU Running
Programs

start, terminate, pause,
…

Memory (SRAM, DRAM) Data allocate, free, read,
write, …

Storage (SSD, HDD,
Tapes,…)

Files create, delete, open,
read, write, …

Virtualization: Allocation
! The OS is a Resource Allocator

! It decides who (i.e., which running program) gets

how much (e.g., CPU cycles, bytes of RAM, bytes
on disk) and when/where

Resource Example resource allocation decisions

CPU Should the currently running program keep
going? Which program should run next?

Memory Where in RAM should a running program’s data
be? Should a program be allowed to use more
RAM?Storage Where on disk should pieces of files be stored?

Virtualization: Why and How?
! Why virtualization?

" Reason #1: To make the computer easier to program

! There was a time “before OSes” in which the programmer had to

know a lot about the insides of the computer

! Think how easy it is today to write code without understanding/

knowing anything about the hardware

" Reason #2: To provide each program with the illusion that
it is alone on the computer, going through its fetch-decode-
execute cycle

! When you develop a program, you don’t think of what other
programs will be running when your program will run!

! And yet many programs run at once

! How doe the OS do it? What a lot of ICS332 is about!

The Three Easy Pieces

! Our textbook is called OSTEP: Operating
Systems: Three Easy Pieces

! The three pieces are:

" Virtualization

" Concurrency

" Persistence

! Let’s talk briefly about concurrency and
persistence….

Multi-Programming
! Multi-programming is the name of the OS’s capability to execute

multiple programming concurrently

" This is only feasible because the OS provides virtualization

! We take multi-programming completely for granted (which is why
many of you likely had never even heard of the term)

! But computers used to be used in “single-user mode”, where a
program is truly alone until completion, and then another
program is started, and so on …

! This had several productivity drawbacks:

" Your computer can do only one thing at a time

" If the program is idle for a while (e.g., waiting for keyboard input,

waiting for any I/O), then the CPU cycles are completely wasted

! OS advances made multi-programming possible, and we never

looked back!

Concurrency
! Due to multi-programming, a big issue has been

concurrency, since the OS has to juggle many things “at
the same time”

! It leads to deep/difficult/interesting issues within the OS

! Furthermore, nowadays most programs are also
concurrent

" e.g., for a single program to use multiple cores using multi-
threading (ICS 432 is all about that)

! Therefore, concurrency is everywhere and is a constant
theme in any OS course

" Section 2.3 in our reading assignment talks about the main
concurrency problem

" If you find it a bit confusing, don’t fear, we’ll come back to this…

Persistence

! Persistence: the ability to store data that
survives a program termination / a computer
shutdown

! This is done by the file system

" Typically considered part of the OS (which

provides “file stuff” system calls)

" Even though it is often developed independently
from the core OS code

Conclusion
! Reading Assignment: 2.1-3. Section 2.4 starts with:

! Sections 2.1 and 2.2 show examples programs to
illustrate virtualization, which I didn’t discuss

" We’ll look at similar programs in future modules

! Section 2.3 is about concurrency and will likely be
confusing for most of you

" That’s ok, we’ll talk about concurrency in a future module

! Coming up next: the kernel

O
S

TE
P

