
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

The Process API

Disclaimer

 Most of the content of this set of lecture
nodes is for UNIX-like OSes
 I won’t have “in UNIX-like OSes” on very slide

 There will be a bit of content about Windows
though

Process Creation
 Processes can create processes
 If process A creates process B, we say that “A is the parent of B”

and “B is a child of A”
 A process can have at most one parent and can have many children

 Each process has a PID (Process ID)
 An integer picked by the OS, always increasing
 If I just created a process and its PID is 456, then the next process that

will be created (by any one) will have PID 457
 Therefore, if I just created a process and it’s PID is 1000, I know that 1000

processes have been created since booting the machine (most of which
have died since, and assuming that the first one had PID 1)

 The PID of the parent of a process is called the PPID (Parent
Process ID)

 Two useful system calls: getpid() and getppid()
 Bottom line: Processes form a genealogy tree!

Looking at the Process Tree
 On Mac OSX: ps axlw

UID PID PPID CPU PRI NI VSZ RSS WCHAN STAT TT TIME COMMAND
[...]
501 2660 1 0 31 0 2458784 536 - Ss ?? 0:00.19 gpg-agent --daemon
501 2667 1 0 31 0 2467676 676 - S ?? 0:00.00 /opt/X11/libexec/launchd_startx /opt/X11/bin/startx -- /opt/X11/bin/Xquartz
501 2668 2667 0 31 0 2439512 1064 - S ?? 0:00.01 /bin/sh /opt/X11/bin/startx -- /opt/X11/bin/Xquartz
501 2733 2668 0 31 0 2452676 836 - S ?? 0:00.00 /opt/X11/bin/xinit /opt/X11/lib/X11/xinit/xinitrc -- /opt/X11/bin/Xquartz :
501 2734 2733 0 31 0 2479128 2704 - S ?? 0:00.01 /opt/X11/bin/Xquartz :0 -nolisten tcp -iglx -auth /Users/casanova/.serverau
501 2736 2734 0 63 0 2654600 46768 - S ?? 0:06.31 /Applications/Utilities/XQuartz.app/Contents/MacOS/X11.bin --listenonly
501 2743 1 0 31 0 2450592 532 - Ss ?? 0:00.19 gpg-agent --daemon
501 2836 2733 0 31 0 2550224 7108 - S ?? 0:00.07 /opt/X11/bin/quartz-wm
[...]

 On Linux: ps --forest -eaf
UID PID PPID C STIME TTY TIME CMD
[...]
daemon 1061 1 0 Aug04 ? 00:00:00 /usr/sbin/atd -f
root 1063 1 0 Aug04 ? 00:00:00 /usr/bin/lxcfs /var/lib/lxcfs/
syslog 1069 1 0 Aug04 ? 00:00:00 /usr/sbin/rsyslogd -n
root 1074 1 0 Aug04 ? 00:00:00 /usr/sbin/sshd -D
root 25393 1074 0 01:31 ? 00:00:00 _ sshd: ubuntu [priv]
ubuntu 25453 25393 0 01:31 ? 00:00:00 _ sshd: ubuntu@pts/0
ubuntu 25454 25453 0 01:31 pts/0 00:00:00 _ -bash
ubuntu 25509 25454 0 01:35 pts/0 00:00:00 _ ps --forest -eaf
root 1081 1 0 Aug04 ? 00:00:01 /usr/lib/snapd/snapd
root 1118 1 0 Aug04 ? 00:00:00 /sbin/mdadm --monitor --pid-file /run/mdadm/monitor.pid --daemoni
[...]

The pstree program

 On ubuntu, the psmisc package comes with
a cool program called pstree

 Let’s go to my Linux box and play with it
 For instance: pstree -c -C age -G -T

Process Creation
 After creating a child the parent continues executing

 But at any point, event right away, it can wait for the child’s
completion

 The child can be:

 either a complete clone of the parent (i.e., have an exact copy of the
parent’s address space)

 or be an entirely new program
 The above is true across most modern OSes, more or less, but

comes with important variations
 Let’s look at process creation in the POSIX standard

 UNIX (mostly Linux these days)
 Darwin (MacOS + iOS + tvOS + watchOS)

 Let’s begin with the strange and powerful fork()

The fork() System Call
 fork() is a system call that creates a new process

 It’s really a thin wrapper over the clone() system call
 But fork() is kept as a system call for backward compatibility

reasons
 The child is an almost exact copy of the parent except for

 Its PID (two processed cannot have the same PID)
 Its PPID (its parent cannot also be its grand-parent)
 Its resource utilization (set to 0 since it’s just started)

 After the call to fork() the parent continues executing and the
child begins executing

 The confusing part: fork() returns an integer value
 It returns 0 to the child
 If returns the child’s PID to the parent
 (In case of error, e.g., the Process Table is full, it returns -1)

fork(): Basic Example

 Simplified version of fork_example1.c
 Note: Errors cases should always be handled… but perhaps doing so for printf is

overkill :)
 Let’s run it…

The basic use of fork()
returnedValue = fork();
if (returnedValue < 0) {

// Manage the error
 printf("Error: Can’t fork!\n”);
} else if (returnedValue == 0) {

// Child code
 printf("I am the child and my pid is %ld\n”, getpid());
 while (1==1); // I just don’t want to terminate

} else {
 // Parent code
 print("I am the parent and the pid of my child is %ld\n”, returnedValue);
 while (1==1); // I just don’t want to terminate either
}

fork(): Second Example

 What does this code print? 12 or 15?

Second example of fork()
a = 12; // Global variable
pid_t pid = fork();
if (pid) {
 // The PARENT
 sleep(5); // Ask the OS to put me in the WAITING state for 5s
 printf(”a = %d”, a); // Display the value of a
 while (1); // Loop forever
} else {
 // The CHILD
 a += 3;
 while (1); // Loop forever
}

fork(): Second Example

 What does this code print? 12 or 15?
 It prints 12 fork_example_2.c

Second example of fork()
a = 12; // Global variable
pid_t pid = fork();
if (pid) {
 // The PARENT
 sleep(5); // Ask the OS to put me in the WAITING state for 5s
 printf(”a = %d”, a); // Display the value of a
 while (1); // Loop forever
} else {
 // The CHILD
 a += 3;
 while (1); // Loop forever
}

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

Text

Data

a: 12

Heap

pid: undefined

Stack

PID: 1000

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

Text

Data

a: 12

Heap

pid: undefined

Stack

PID: 1000

Text

Data

a: 12

Heap

pid: undefined

Stack

PID: 1001

Right after fork() and before the assignment to pid

identical

identical

identical

identical

PARENT CHILD

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

Text

Data

a: 12

Heap

pid: 1001

Stack

PID: 1000

Text

Data

a: 12

Heap

pid: 0

Stack

PID: 1001

After the assignment to pid

identical

identical

identical

different

PARENT CHILD

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 12

Heap

pid: 0

Stack

PID: 1001
identical

Identical

identical

different

The parent calls sleep(),
goes to the waiting state,
which will let the child run

PARENT CHILD

pid: 1001

Stack

sleep() act. record

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 15

Heap

pid: 0

Stack

PID: 1001
identical

different

identical

different

Parent

The child runs, and updates its values of a to 15

PARENT CHILD

pid: 1001

Stack

sleep() act. record

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

The child does an infinite loop, and at some point
will be interrupted so that another process gets to run

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 15

Heap

pid: 0

Stack

PID: 1001
identical

different

identical

different

Parent

PARENT CHILD

pid: 1001

Stack

sleep() act. record

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

The parent calls printf() and prints 12
(its value of a)

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 15

Heap

pid: 0

Stack

PID: 1001
identical

different

identical

different

Parent

PARENT CHILD

pid: 1001

Stack

printf() act. record

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

printf() returns and the parent
goes into its own infinite loop

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 15

Heap

pid: 0

Stack

PID: 1001
identical

different

identical

different

Parent

PARENT CHILD

pid: 1001

Stack

Second Example’s Lesson

 Both processes coexist independently
 The code is executed independently in the Parent

and in the Child
 The data segment of the Parent has nothing to do

with the data segment of the Child
 The stack of the Parent has nothing to do with the

data segment of the Child
 The heap of the Parent has nothing to do with the

data segment of the Child

 Let’s look at a small variation of the example
and see if we can figure it out…

fork(): Second Example, Tweaked

 What does this code print?

Second example of fork(), tweaked

int a = 12;
retVal = fork();
if (retVal) {
 // The PARENT (or error)
 sleep(5); // Ask the OS to put me in the WAITING state for 5s
} else {
 // The CHILD
 a += 3;
}

printf(”%d\n”, a); // Display the value of a

fork(): Second Example, Tweaked

 What does this code print?
 It prints 15\n12\n fork_example3.c

Second example of fork(), tweaked

int a = 12;
retVal = fork();
if (retVal) {
 // The PARENT (or error)
 sleep(5); // Ask the OS to put me in the WAITING state for 5s
} else {
 // The CHILD
 a += 3;
}

printf(“%d\n”, a); // Display the value of a

fork() is sometimes confusing

 How many times does this program print Hello? (Show of
hands)

fork() and printing “Hello”
fork();
printf(“Hello”);
fork();
print(“Hello”);

fork() is sometimes confusing

 How many times does this program print Hello? (Show of
hands)

 Answer: 6 times fork_example4.cx

fork() and printing “Hello”
fork();
printf(“Hello”);
fork();
print(“Hello”);

 One process calls fork()
 Two processes print “Hello”
 Two processes call fork()
 Four processes print “Hello"

fork(): A crazy example

 How many processes does this C program create?
 Note the typical C coding style for condition in the

conditional (true if fork() returns non-zero)
 Let’s go through this together

 Clearly the above program is not useful
 But if you can figure it out, that means you understand

fork() 100%

fork() gone crazy
fork();
if (fork()) {
 fork();
}
fork();

fork(): A crazy example

fork();
if (fork()) {
 fork();
}
fork();

Initial process

fork(): A crazy example

fork();
if (fork()) {
 fork();
}
fork();

Initial process
fork();
if (fork()) {
 fork();
}
fork();

Child

fork(): A crazy example

fork();
if (fork()) {
 fork();
}
fork();

Initial process
fork();
if (fork()) {
 fork();
}
fork();

Child

fork();
if (fork()) {
 fork();
}
fork();

Child
fork();
if (fork()) {
 fork();
}
fork();

Grand-child

fork(): A crazy example

fork();
if (fork()) {
 fork();
}
fork();

Initial process
fork();
if (fork()) {
 fork();
}
fork();

Child

fork();
if (fork()) {
 fork();
} // else
fork();

Child
fork();
if (fork()) {
 fork();
} // else
fork();

Grand-child

fork();
if (fork()) {
 fork();
}
fork();

Child
fork();
if (fork()) {
 fork();
}
fork();

Grand-Child

fork(): A crazy example

fork();
if (fork()) {
 fork();
}
fork();

Initial process
fork();
if (fork()) {
 fork();
}
fork();

Child

fork();
if (fork()) {
 fork();
}
fork();

Child
fork();
if (fork()) {
 fork();
}
fork();

Grand-child

fork();
if (fork()) {
 fork();
}
fork();

Child
fork();
if (fork()) {
 fork();
}
fork();

Grand-Child

 We now have 6 processes
 Each calls fork()
 We end up with 12

processes in total (11
were created)

fork_example5.c

Filling up the Process Table

 The above program will fill up the process table
 This is often called a “fork bomb”, and is typically a bug (I’ve seen it

happen more than once!)
 The result is that the system becomes unusable and has to be hard-

rebooted
 Typically the OS will bound the number of processes a user can create
 One can change that limit: ulimit -u <count>

 And one can check on what that limit is: ulimit -u
 But as a user, if you reach that limit, although you won’t take down the

system, you won’t be able to use it at all…

A fork bomb!

while (1) {
 fork();
}

The exec* Syscall Family
 man 3 exec: execl, execlp, execle, execv,
execvp, execvpe

 These are all variations of the “exec” syscall: replaces
the process image (i.e., the process’ address space) by
that of a specific program (stored on disk as an
executable)

 You give exec:
 A path to an executable
 A list of command-line arguments for that executable
 A set of environment variables

 The call to exec never returns unless there is an error,
and your running program is now another running
program

Exec: Basic Example

 The above program immediately “becomes”
the ls program invoked with arguments
-l /tmp

 exec_example1.c

Basic exec example

int main(int argc, char *argv[]) {
 char* const args[] = {"ls", "-l", "/tmp", NULL};
 execv("/bin/ls", args);
 printf("This never gets executed...\n");
}

Exec: Combined with fork()

 This is exactly how the Shell is able to run
commands!

 exec_example2.c

The quintessential fork-exec example

if (fork() == 0) {
// Child

 char* const args[] = {"ls", "-l", “/tmp", NULL};
 execv("bin/ls", args);
} else {
 // Parent
 while (1);
}

The Living Dead???
 Let’s run the program on the previous slide on

Linux and look at the running processes…

 PID TTY STAT TIME COMMAND
 1 pts/0 Ssl 0:00 /bin/bash
 29 pts/0 Rl 0:05 ./exec_example4
 32 pts/0 Z 0:00 _ [ls] <defunct>

The Living Dead???
 Let’s run the program on the previous slide on

Linux and look at the running processes…

 PID TTY STAT TIME COMMAND
 1 pts/0 Ssl 0:00 /bin/bash
 29 pts/0 Rl 0:05 ./exec_example4
 32 pts/0 Z 0:00 _ [ls] <defunct>

 Defunct (from the Latin defunctus) means dead
 The “Z” stands for Zombie

Zombie Processes
 When a child process dies, it remains as a zombie in the Terminated state

 Recall that in the Process Lifecycle diagram, we had a Terminated state, which
some of you might have thought a bit useless?

 Rationale: The parent process may want to know about the status of a
child that has died in the past to see what happened to it

 We’ll see how to do that in a bit
 The OS keeps zombies around for this purpose:

 Zombies do not use hardware resources, but a slot in the Process Table!
 The Process Table may fill up due to Zombies (and cause fork() to fail)

 A zombie lingers until

 Its parent has acknowledged its death, or
 Its parent dies

 The zombie is then “reaped” by the OS
 It is very frowned upon to leave zombies around unnecessarily

 And yes, this is all very dark/macabre…

Process Termination
 To understand how to get rid of zombies, we need to

learn a bit more about process termination
 A process terminates itself with the exit() system

call, which takes as argument an integer called the
process exit|return|error value|code

 All resources of the process are then deallocated by
the OS (memory, open files, I/O buffers, …)

 But the PCB main remain in the Process Table as a zombie

 A process can also cause the termination of another
process

 This is done using signals and the kill() system
call...

Signals
 Signals are software interrupts, i.e., a signal is an asynchronous event

that a program must act upon in some way

 The OS defines a number of signals, each with a name and a number,
and some “default” meaning

 See man 7 signal
 Signals happen for various reasons:

 ^C on the command-line sends a SIGINT (”Interrupt from keyboard”) signal to
the running program in the Shell

 Invalid access to valid memory sends a SIGSEGV signal to the running
process (e.g., trying to write to read-only memory)

 Tying to access an invalid address sends a SIGBUS signal to the running
process (e.g., trying to de-reference and non-allocated pointer)

 A process can send a SIGKILL signal to another process to kill it
 Signals can be used for process synchronization (“hey! do

something!”), but we’ll see other more powerful/flexible synchronization
mechanisms

Signal Handles
 Each signal causes a default behavior in the process

 e.g., the SIGINT signal causes the process to terminate
 The signal() syscall allows a process to specify what

to do when a signal is received
 signal(SIGINT, SIG_IGN); // Ignore SIGINT
 signal(SIGINT, SIG_DFL); // Default behavior
 signal(SIGINT, my_handler);// Custom behavior

 Let’s look at signal_example.c

 Some signals cannot be reprogrammed by the user:
SIGKILL, SIGSTOP, etc.

Back to Zombies: wait() and waitpid()

 Each parent can wait for a child’s completion
 The wait() syscall – See wait example1.c

 Blocks until any child completes
 Returns the pid of the completed child and the child’s exit code

 The waitpid() syscall
 Blocks until a specific child completes — See wait example2.c
 Can be made non-blocking — See wait_example3.c

 One way to avoid zombies: always call wait() or waitpid()
 This seems easy enough, but sometimes really inconvenient

 e.g., I am a Web server, and each time I get a request for some content I
spawn a process to handle it

 The Web server really doesn’t need to “wait” for children processes to
terminate; it wants to “fire and forget”

 The only goal would be to just avoid zombies...
 So how do we do this?

The SIGCHLD signal

 When a child exits, a SIGCHLD signal is sent to the parent
 The typical convenient way to avoid zombies altogether:

 The parent associates a handler to SIGCHLD
 The handler calls wait()
 This way all children terminations are acknowledged

 See wait_example4.c

 We can now write zombie-free code:

 If you need to wait for a child process to terminate, then great, call
wait()

 And create a handler that will asynchronously call wait() for you
for those children you don’t want to explicitly wait on

 This way, wait() is called for all children

Orphans
 What happens when a parent dies before its child?
 The child becomes an orphan
 Let’s run orphan example1.c

 We see that the child keeps running even after its parent has
terminated!

 Who becomes responsible for the orphan?
 Let’s run orphan example2.c in which the child prints its PPID
 The orphan has been adopted by the process with PID 1

 On Linux this is the /sbin/init program (on “recent” Linux, the
adopter is init—user)

 On MacOS this is the /sbin/launchd process
 Having orphan processes could be a bug or a feature of your

code

Giving Up Parental Responsibilities
 To create a child process that is completely separate from the parent: create

a grandchild and kill its parent (I know, it’s horrible)

Bad grandpa
if (!fork()) { // Child
 if (!fork()) { //Grandchild
 ...
 exit(0); //Will be orphaned and then reaped by init
 }
 exit(0) //Will be reaped by bad grandpa
} else {
 // Grandpa
 wait(NULL); // Wait for the child to exit, so that it’s not zombified
}
// At this point, I am the Grandpa and I have no responsibilities,
// because my grandchild has been adopted by PID 1

 The process with PID 1 has adopted the grandchild
 It is responsible and calls wait() is a handler, so the grandchild will not become a zombie
 Useful to start a process and logout

 The screen command does this and is life-saving for the command-line user!

What about Windows?
 The Windows documentation is clear: “One of the largest areas

of difference [in porting UNIX applications to Windows] is in the
process model. UNIX has fork; Win32 does not.”

 In Windows, the CreateProcess() call combines fork() and
exec()

 Separation of fork and exec allows many clever “tricks” in UNIX, which
are not possible in Windows

 From The Evolution of the Unix Time-sharing System: “In PDP-7 fork()
required precisely 27 lines of assembly code” ... “a combined fork-exec
[`a la Windows] would have been considerably more complicated”

 There is an equivalent to wait(): WaitForSingleObject()
 There is an equivalent to kill(): TerminateProcess()

 So, overall, Windows allows for the same capabilities as UNIX
(which shouldn’t be surprising), but with a different flavor

https://www.bell-labs.com/usr/dmr/www/hist.html

Conclusion

 Processes are running programs
 OSes provide a rich set of syscalls to deal

with processes

 Make sure you understand all the examples
 Better if you experiment yourself by compiling/

playing with them
 Fork-exec in UNIX / CreateProcess in

Windows

