
Henri Casanova (henric@hawaii.edu)

ICS332

Operating Systems

The Process API

Disclaimer

 Most of the content of this set of lecture
nodes is for UNIX-like OSes

 I won’t have “in UNIX-like OSes” on very slide

 There will be a bit of content about Windows
though

Process Creation
 Processes can create processes

 If process A creates process B, we say that “A is the parent of B”

and “B is a child of A”

 A process can have at most one parent and can have many children

 Each process has a PID (Process ID)

 An integer picked by the OS, always increasing

 If I just created a process and its PID is 456, then the next process that

will be created (by any one) will have PID 457

 Therefore, if I just created a process and it’s PID is 1000, I know that 1000

processes have been created since booting the machine (most of which
have died since, and assuming that the first one had PID 1)

 The PID of the parent of a process is called the PPID (Parent
Process ID)

 Two useful system calls: getpid() and getppid()

 Bottom line: Processes form a genealogy tree!

Looking at the Process Tree
 On Mac OSX: ps axlw

UID PID PPID CPU PRI NI VSZ RSS WCHAN STAT TT TIME COMMAND

[...]

501 2660 1 0 31 0 2458784 536 - Ss ?? 0:00.19 gpg-agent --daemon

501 2667 1 0 31 0 2467676 676 - S ?? 0:00.00 /opt/X11/libexec/launchd_startx /opt/X11/bin/startx -- /opt/X11/bin/Xquartz

501 2668 2667 0 31 0 2439512 1064 - S ?? 0:00.01 /bin/sh /opt/X11/bin/startx -- /opt/X11/bin/Xquartz

501 2733 2668 0 31 0 2452676 836 - S ?? 0:00.00 /opt/X11/bin/xinit /opt/X11/lib/X11/xinit/xinitrc -- /opt/X11/bin/Xquartz :

501 2734 2733 0 31 0 2479128 2704 - S ?? 0:00.01 /opt/X11/bin/Xquartz :0 -nolisten tcp -iglx -auth /Users/casanova/.serverau

501 2736 2734 0 63 0 2654600 46768 - S ?? 0:06.31 /Applications/Utilities/XQuartz.app/Contents/MacOS/X11.bin --listenonly

501 2743 1 0 31 0 2450592 532 - Ss ?? 0:00.19 gpg-agent --daemon

501 2836 2733 0 31 0 2550224 7108 - S ?? 0:00.07 /opt/X11/bin/quartz-wm

[...]

 On Linux: ps --forest -eaf
UID PID PPID C STIME TTY TIME CMD

[...]

daemon 1061 1 0 Aug04 ? 00:00:00 /usr/sbin/atd -f

root 1063 1 0 Aug04 ? 00:00:00 /usr/bin/lxcfs /var/lib/lxcfs/

syslog 1069 1 0 Aug04 ? 00:00:00 /usr/sbin/rsyslogd -n

root 1074 1 0 Aug04 ? 00:00:00 /usr/sbin/sshd -D

root 25393 1074 0 01:31 ? 00:00:00 _ sshd: ubuntu [priv]

ubuntu 25453 25393 0 01:31 ? 00:00:00 _ sshd: ubuntu@pts/0

ubuntu 25454 25453 0 01:31 pts/0 00:00:00 _ -bash

ubuntu 25509 25454 0 01:35 pts/0 00:00:00 _ ps --forest -eaf

root 1081 1 0 Aug04 ? 00:00:01 /usr/lib/snapd/snapd

root 1118 1 0 Aug04 ? 00:00:00 /sbin/mdadm --monitor --pid-file /run/mdadm/monitor.pid --daemoni

[...]

The pstree program

 On ubuntu, the psmisc package comes with
a cool program called pstree

 Let’s go to my Linux box and play with it

 For instance: pstree -c -C age -G -T

Process Creation
 After creating a child the parent continues executing

 But at any point, event right away, it can wait for the child’s
completion

 The child can be:

 either a complete clone of the parent (i.e., have an exact copy of the
parent’s address space)

 or be an entirely new program

 The above is true across most modern OSes, more or less, but

comes with important variations

 Let’s look at process creation in the POSIX standard

 UNIX (mostly Linux these days)

 Darwin (MacOS + iOS + tvOS + watchOS)

 Let’s begin with the strange and powerful fork()

The fork() System Call
 fork() is a system call that creates a new process

 It’s really a thin wrapper over the clone() system call

 But fork() is kept as a system call for backward compatibility

reasons

 The child is an almost exact copy of the parent except for

 Its PID (two processed cannot have the same PID)

 Its PPID (its parent cannot also be its grand-parent)

 Its resource utilization (set to 0 since it’s just started)

 After the call to fork() the parent continues executing and the
child begins executing

 The confusing part: fork() returns an integer value

 It returns 0 to the child

 If returns the child’s PID to the parent

 (In case of error, e.g., the Process Table is full, it returns -1)

fork(): Basic Example

 Simplified version of fork_example1.c

 Note: Errors cases should always be handled… but perhaps doing so for printf is

overkill :)

 Let’s run it…

The basic use of fork()
returnedValue = fork();

if (returnedValue < 0) {

// Manage the error

 printf("Error: Can’t fork!\n”);

} else if (returnedValue == 0) {

// Child code

 printf("I am the child and my pid is %ld\n”, getpid());

 while (1==1); // I just don’t want to terminate

} else {

 // Parent code

 print("I am the parent and the pid of my child is %ld\n”, returnedValue);

 while (1==1); // I just don’t want to terminate either

}

fork(): Second Example

 What does this code print? 12 or 15?

Second example of fork()
a = 12; // Global variable

pid_t pid = fork();

if (pid) {

 // The PARENT 
 sleep(5); // Ask the OS to put me in the WAITING state for 5s

 printf(”a = %d”, a); // Display the value of a 
 while (1); // Loop forever

} else { 
 // The CHILD 
 a += 3; 
 while (1); // Loop forever

}

fork(): Second Example

 What does this code print? 12 or 15?

 It prints 12 fork_example_2.c

Second example of fork()
a = 12; // Global variable

pid_t pid = fork();

if (pid) {

 // The PARENT 
 sleep(5); // Ask the OS to put me in the WAITING state for 5s

 printf(”a = %d”, a); // Display the value of a 
 while (1); // Loop forever

} else { 
 // The CHILD 
 a += 3; 
 while (1); // Loop forever

}

fork(): Second Example

a = 12;

pid_t pid = fork();

if (pid) {  
 sleep(5);

 printf(”a = %d”, a);

 while (1);

} else { 
 a += 3; 
 while (1);

}

Text

Data

a: 12

Heap

pid: undefined

Stack

PID: 1000

fork(): Second Example

a = 12;

pid_t pid = fork();

if (pid) {  
 sleep(5);

 printf(”a = %d”, a);

 while (1);

} else { 
 a += 3; 
 while (1);

}

Text

Data

a: 12

Heap

pid: undefined

Stack

PID: 1000

Text

Data

a: 12

Heap

pid: undefined

Stack

PID: 1001

Right after fork() and before the assignment to pid

identical

identical

identical

identical

PARENT CHILD

fork(): Second Example

a = 12;

pid_t pid = fork();

if (pid) {  
 sleep(5);

 printf(”a = %d”, a);

 while (1);

} else { 
 a += 3; 
 while (1);

}

Text

Data

a: 12

Heap

pid: 1001

Stack

PID: 1000

Text

Data

a: 12

Heap

pid: 0

Stack

PID: 1001

After the assignment to pid

identical

identical

identical

different

PARENT CHILD

fork(): Second Example

a = 12;

pid_t pid = fork();

if (pid) {  
 sleep(5);

 printf(”a = %d”, a);

 while (1);

} else { 
 a += 3; 
 while (1);

}

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 12

Heap

pid: 0

Stack

PID: 1001
identical

Identical

identical

different

The parent calls sleep(),

goes to the waiting state,

which will let the child run

PARENT CHILD

pid: 1001

Stack

sleep() act. record

fork(): Second Example

a = 12;

pid_t pid = fork();

if (pid) {  
 sleep(5);

 printf(”a = %d”, a);

 while (1);

} else { 
 a += 3; 
 while (1);

}

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 15

Heap

pid: 0

Stack

PID: 1001
identical

different

identical

different

Parent

The child runs, and updates its values of a to 15

PARENT CHILD

pid: 1001

Stack

sleep() act. record

fork(): Second Example

a = 12;

pid_t pid = fork();

if (pid) {  
 sleep(5);

 printf(”a = %d”, a);

 while (1);

} else { 
 a += 3; 
 while (1);

}

The child does an infinite loop, and at some point

will be interrupted so that another process gets to run

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 15

Heap

pid: 0

Stack

PID: 1001
identical

different

identical

different

Parent

PARENT CHILD

pid: 1001

Stack

sleep() act. record

fork(): Second Example

a = 12;

pid_t pid = fork();

if (pid) {  
 sleep(5);

 printf(”a = %d”, a);

 while (1);

} else { 
 a += 3; 
 while (1);

}

The parent calls printf() and prints 12

(its value of a)

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 15

Heap

pid: 0

Stack

PID: 1001
identical

different

identical

different

Parent

PARENT CHILD

pid: 1001

Stack

printf() act. record

fork(): Second Example

a = 12;

pid_t pid = fork();

if (pid) {  
 sleep(5);

 printf(”a = %d”, a);

 while (1);

} else { 
 a += 3; 
 while (1);

}

printf() returns and the parent

goes into its own infinite loop

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 15

Heap

pid: 0

Stack

PID: 1001
identical

different

identical

different

Parent

PARENT CHILD

pid: 1001

Stack

Second Example’s Lesson

 Both processes coexist independently

 The code is executed independently in the Parent

and in the Child

 The data segment of the Parent has nothing to do

with the data segment of the Child

 The stack of the Parent has nothing to do with the

data segment of the Child

 The heap of the Parent has nothing to do with the

data segment of the Child

 Let’s look at a small variation of the example
and see if we can figure it out…

fork(): Second Example, Tweaked

 What does this code print?

Second example of fork(), tweaked

int a = 12;

retVal = fork();

if (retVal) {

 // The PARENT (or error) 
 sleep(5); // Ask the OS to put me in the WAITING state for 5s

} else { 
 // The CHILD 
 a += 3;

}

printf(”%d\n”, a); // Display the value of a

fork(): Second Example, Tweaked

 What does this code print?

 It prints 15\n12\n fork_example3.c

Second example of fork(), tweaked

int a = 12;

retVal = fork();

if (retVal) {

 // The PARENT (or error) 
 sleep(5); // Ask the OS to put me in the WAITING state for 5s

} else { 
 // The CHILD 
 a += 3;

}

printf(“%d\n”, a); // Display the value of a

fork() is sometimes confusing

 How many times does this program print Hello? (Show of
hands)

fork() and printing “Hello”
fork();

printf(“Hello”);

fork();

print(“Hello”);

fork() is sometimes confusing

 How many times does this program print Hello? (Show of
hands)

 Answer: 6 times fork_example4.cx

fork() and printing “Hello”
fork();

printf(“Hello”);

fork();

print(“Hello”);

 One process calls fork()

 Two processes print “Hello”

 Two processes call fork()

 Four processes print “Hello"

fork(): A crazy example

 How many processes does this C program create?

 Note the typical C coding style for condition in the

conditional (true if fork() returns non-zero)

 Let’s go through this together

 Clearly the above program is not useful

 But if you can figure it out, that means you understand

fork() 100%

fork() gone crazy
fork();

if (fork()) {

 fork();

}

fork();

fork(): A crazy example

fork();

if (fork()) {

 fork();

}

fork();

Initial process

fork(): A crazy example

fork();

if (fork()) {

 fork();

}

fork();

Initial process
fork();

if (fork()) {

 fork();

}

fork();

Child

fork(): A crazy example

fork();

if (fork()) {

 fork();

}

fork();

Initial process
fork();

if (fork()) {

 fork();

}

fork();

Child

fork();

if (fork()) {

 fork();

}

fork();

Child
fork();

if (fork()) {

 fork();

}

fork();

Grand-child

fork(): A crazy example

fork();

if (fork()) {

 fork();

}

fork();

Initial process
fork();

if (fork()) {

 fork();

}

fork();

Child

fork();

if (fork()) {

 fork();

} // else

fork();

Child
fork();

if (fork()) {

 fork();

} // else

fork();

Grand-child

fork();

if (fork()) {

 fork();

}

fork();

Child
fork();

if (fork()) {

 fork();

}

fork();

Grand-Child

fork(): A crazy example

fork();

if (fork()) {

 fork();

}

fork();

Initial process
fork();

if (fork()) {

 fork();

}

fork();

Child

fork();

if (fork()) {

 fork();

}

fork();

Child
fork();

if (fork()) {

 fork();

}

fork();

Grand-child

fork();

if (fork()) {

 fork();

}

fork();

Child
fork();

if (fork()) {

 fork();

}

fork();

Grand-Child

 We now have 6 processes

 Each calls fork()

 We end up with 12

processes in total (11
were created)

fork_example5.c

Filling up the Process Table

 The above program will fill up the process table

 This is often called a “fork bomb”, and is typically a bug (I’ve seen it

happen more than once!)

 The result is that the system becomes unusable and has to be hard-

rebooted

 Typically the OS will bound the number of processes a user can create

 One can change that limit: ulimit -u <count>

 And one can check on what that limit is: ulimit -u

 But as a user, if you reach that limit, although you won’t take down the

system, you won’t be able to use it at all…

A fork bomb!

while (1) {

 fork();

}

The exec* Syscall Family
 man 3 exec: execl, execlp, execle, execv,
execvp, execvpe

 These are all variations of the “exec” syscall: replaces
the process image (i.e., the process’ address space) by
that of a specific program (stored on disk as an
executable)

 You give exec:

 A path to an executable

 A list of command-line arguments for that executable

 A set of environment variables

 The call to exec never returns unless there is an error,
and your running program is now another running
program

Exec: Basic Example

 The above program immediately “becomes”
the ls program invoked with arguments
-l /tmp

 exec_example1.c

Basic exec example

int main(int argc, char *argv[]) { 
 char* const args[] = {"ls", "-l", "/tmp", NULL};

 execv("/bin/ls", args); 
 printf("This never gets executed...\n"); 
}

Exec: Combined with fork()

 This is exactly how the Shell is able to run
commands!

 exec_example2.c

The quintessential fork-exec example

if (fork() == 0) {

// Child

 char* const args[] = {"ls", "-l", “/tmp", NULL};

 execv("bin/ls", args);

} else {

 // Parent

 while (1);

}

The Living Dead???
 Let’s run the program on the previous slide on

Linux and look at the running processes…

 PID TTY STAT TIME COMMAND

 1 pts/0 Ssl 0:00 /bin/bash

 29 pts/0 Rl 0:05 ./exec_example4

 32 pts/0 Z 0:00 _ [ls] <defunct>

The Living Dead???
 Let’s run the program on the previous slide on

Linux and look at the running processes…

 PID TTY STAT TIME COMMAND

 1 pts/0 Ssl 0:00 /bin/bash

 29 pts/0 Rl 0:05 ./exec_example4

 32 pts/0 Z 0:00 _ [ls] <defunct>

 Defunct (from the Latin defunctus) means dead

 The “Z” stands for Zombie

Zombie Processes
 When a child process dies, it remains as a zombie in the Terminated state

 Recall that in the Process Lifecycle diagram, we had a Terminated state, which
some of you might have thought a bit useless?

 Rationale: The parent process may want to know about the status of a
child that has died in the past to see what happened to it

 We’ll see how to do that in a bit

 The OS keeps zombies around for this purpose:

 Zombies do not use hardware resources, but a slot in the Process Table!

 The Process Table may fill up due to Zombies (and cause fork() to fail)

 A zombie lingers until

 Its parent has acknowledged its death, or

 Its parent dies

 The zombie is then “reaped” by the OS

 It is very frowned upon to leave zombies around unnecessarily

 And yes, this is all very dark/macabre…

Process Termination
 To understand how to get rid of zombies, we need to

learn a bit more about process termination

 A process terminates itself with the exit() system

call, which takes as argument an integer called the
process exit|return|error value|code

 All resources of the process are then deallocated by
the OS (memory, open files, I/O buffers, …)

 But the PCB main remain in the Process Table as a zombie

 A process can also cause the termination of another
process

 This is done using signals and the kill() system
call...

Signals
 Signals are software interrupts, i.e., a signal is an asynchronous event

that a program must act upon in some way

 The OS defines a number of signals, each with a name and a number,
and some “default” meaning

 See man 7 signal

 Signals happen for various reasons:

 ^C on the command-line sends a SIGINT (”Interrupt from keyboard”) signal to
the running program in the Shell

 Invalid access to valid memory sends a SIGSEGV signal to the running
process (e.g., trying to write to read-only memory)

 Tying to access an invalid address sends a SIGBUS signal to the running
process (e.g., trying to de-reference and non-allocated pointer)

 A process can send a SIGKILL signal to another process to kill it

 Signals can be used for process synchronization (“hey! do

something!”), but we’ll see other more powerful/flexible synchronization
mechanisms

Signal Handles
 Each signal causes a default behavior in the process

 e.g., the SIGINT signal causes the process to terminate

 The signal() syscall allows a process to specify what

to do when a signal is received

 signal(SIGINT, SIG_IGN); // Ignore SIGINT

 signal(SIGINT, SIG_DFL); // Default behavior

 signal(SIGINT, my_handler);// Custom behavior

 Let’s look at signal_example.c

 Some signals cannot be reprogrammed by the user:
SIGKILL, SIGSTOP, etc.

Back to Zombies: wait() and waitpid()

 Each parent can wait for a child’s completion

 The wait() syscall – See wait example1.c

 Blocks until any child completes

 Returns the pid of the completed child and the child’s exit code

 The waitpid() syscall

 Blocks until a specific child completes — See wait example2.c

 Can be made non-blocking — See wait_example3.c

 One way to avoid zombies: always call wait() or waitpid()

 This seems easy enough, but sometimes really inconvenient

 e.g., I am a Web server, and each time I get a request for some content I
spawn a process to handle it

 The Web server really doesn’t need to “wait” for children processes to
terminate; it wants to “fire and forget”

 The only goal would be to just avoid zombies...

 So how do we do this?

The SIGCHLD signal

 When a child exits, a SIGCHLD signal is sent to the parent

 The typical convenient way to avoid zombies altogether:

 The parent associates a handler to SIGCHLD

 The handler calls wait()

 This way all children terminations are acknowledged

 See wait_example4.c

 We can now write zombie-free code:

 If you need to wait for a child process to terminate, then great, call
wait()

 And create a handler that will asynchronously call wait() for you
for those children you don’t want to explicitly wait on

 This way, wait() is called for all children

Orphans
 What happens when a parent dies before its child?

 The child becomes an orphan

 Let’s run orphan example1.c

 We see that the child keeps running even after its parent has
terminated!

 Who becomes responsible for the orphan?

 Let’s run orphan example2.c in which the child prints its PPID

 The orphan has been adopted by the process with PID 1

 On Linux this is the /sbin/init program (on “recent” Linux, the
adopter is init—user)

 On MacOS this is the /sbin/launchd process

 Having orphan processes could be a bug or a feature of your

code

Giving Up Parental Responsibilities
 To create a child process that is completely separate from the parent: create

a grandchild and kill its parent (I know, it’s horrible)

Bad grandpa
if (!fork()) { // Child

 if (!fork()) { //Grandchild

 ...

 exit(0); //Will be orphaned and then reaped by init

 }

 exit(0) //Will be reaped by bad grandpa

} else {

 // Grandpa

 wait(NULL); // Wait for the child to exit, so that it’s not zombified

}

// At this point, I am the Grandpa and I have no responsibilities,

// because my grandchild has been adopted by PID 1

 The process with PID 1 has adopted the grandchild

 It is responsible and calls wait() is a handler, so the grandchild will not become a zombie

 Useful to start a process and logout

 The screen command does this and is life-saving for the command-line user!

What about Windows?
 The Windows documentation is clear: “One of the largest areas

of difference [in porting UNIX applications to Windows] is in the
process model. UNIX has fork; Win32 does not.”

 In Windows, the CreateProcess() call combines fork() and
exec()

 Separation of fork and exec allows many clever “tricks” in UNIX, which
are not possible in Windows

 From The Evolution of the Unix Time-sharing System: “In PDP-7 fork()
required precisely 27 lines of assembly code” ... “a combined fork-exec
[`a la Windows] would have been considerably more complicated”

 There is an equivalent to wait(): WaitForSingleObject()

 There is an equivalent to kill(): TerminateProcess()

 So, overall, Windows allows for the same capabilities as UNIX
(which shouldn’t be surprising), but with a different flavor

https://www.bell-labs.com/usr/dmr/www/hist.html

Conclusion

 Processes are running programs

 OSes provide a rich set of syscalls to deal

with processes

 Make sure you understand all the examples

 Better if you experiment yourself by compiling/

playing with them

 Fork-exec in UNIX / CreateProcess in

Windows

