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Communicating Processes?
 So far we have seen independent processes  

 Each process runs code independently 
 Parents and aware of their children, and children are aware of their 

parents, but they do not interact  
 Besides the ability to wait for a child to terminate and to kill another process 

 But often we need processes to cooperate 
 To share information (e.g., access to common data)  
 To speed up computation (e.g., to use multiple cores) 
 Because it’s convenient (e.g., some applications are naturally 

implemented as sets of interacting processes)  
 But, processes cannot see each other’s address spaces! 
 In general, the means of communication between cooperating 

processes is called Inter-Process Communication (IPC) 
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Message Passing
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Message Passing
 Option #1: Message Passing
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Message Passing
 Option #2: Shared Memory
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Pros and Cons
 Message Passing 

 😀  Simple to implement in the 
kernel 

 😡  Limited by kernel size: 
small messages 

 😡  One syscall per operation 
(send / receive): high 
overhead 

 😡  Cumbersome for users as 
code can be hard to read with 
sends/receives everywhere

 Shared memory 
 😡  Not as easy to implement in 

the kernel (stay tuned…) 
 😀  Large messages allowed 
 😀  Low overhead: a few 

syscalls to set it up, and then no 
kernel involvement thereafter 

 😀  Convenient for users (after 
setup, just normal memory 
reads/writes) 

 😡  Violates the principle of 
memory protection between 
processes, which can lead to 
horrible bugs



Message Passing 
 All OSes provide several IPC abstractions and API 

 And so do many user-level libraries 
 In your careers you will have to define abstraction and APIs for all kinds 

of purposes 
 Abstraction and API design choices often seem innocuous but can have 

huge impact 
 Good choices can lead to awesome success, bad choices can lead to abject 

failures/rewrites 
 Making good Abstraction/API choices is hard: 

 Sufficiently expressive (can users do anything they might want to do with it?) 
 Sufficiently convenient (can users do what they want easily?) 
 Not too hard for you to implement/maintain/evolve 

 Pedagogic challenge: Conveying to college students how important/
crucial this is, when it all seems like a bunch of pointless nitpicking  

 You wouldn’t believe the number of hours spent daily on minuscule API details in 
the software industry 

 Because you haven’t yet experienced the above “snowball effect” of your poorly 
designed Abstractions/API  





POSIX Message Queue
 A standard message passing scheme supported by 

UNIX-like systems are POSIX Message Queues 
 There is a message queue “object” that has a name, a 

maximum msg size, and a maximum number of msg in the 
queue 

 Both processes create their own queue object using the same 
name (meaning they both have a reference to the same queue) 

 The queue object supports send/receive operations 
 This Abstraction/API makes several design choices 

 One option called “direct communication” would have been “I 
am process A and I send a message to process B”,  which 
requires that process B is created/known when A does the send 

 Instead, this API uses “indirect communication” by using a 
message queue object, which is more flexible 

 Just for kicks let’s look at a hello world example…



POSIX MQ Hello World

 Let’s look at and run the real/full code in posix_mq_example.c  
 Conceptually this is just like network communication, but within a machine 
 There are SO many abstractions/implementations of message passing for all kinds 

of scenarios/purposes, each with slight differences

pid_t pid = fork(); 

if (pid) { // parent 

  mqd_t queue = mq_open(“mq”, O_CREAT | O_WRONLY, 0664, NULL); 
  char msg[MSG_SIZE] = “Hello!"; 
  mq_send(queue, msg, MSG_SIZE, 1); 
  waitpid(pid, NULL, 0); 
  mq_close(queue); 
  mq_unlink(MQ_NAME); 

} else { // child 

  mqd_t queue = mq_open(“mq”, O_CREAT | O_RDONLY, 0664, NULL); 
  char msg[MSG_SIZE]; 
  mq_receive(queue, msg, MSG_SIZE, NULL); 
  mq_close(queue); 
  mq_unlink(MQ_NAME); 

}



POSIX Shared Memory Segments
 Like there is a POSIX MQ API, there is a POSIX SHM (Shared 

Memory) API 
 The abstraction is that of a “shared memory segment” with a 

simple API 
 One process can create a shared memory segment 
 Multiple processes can then attach it to their address spaces 

 Bye bye memory protection 
 It’s the processes’ (i.e., the developer’s) responsibility to make sure 

that processes are not stepping on each other’s toes 
 Once the setup is done, the OS is not involved 

 What happens in shared memory stays in shared memory 
 At some point, the shared memory segment is freed by the 

requester 
 Let’s look at a Hello World example…



POSIX SHM Hello World

 Let’s look at and run the real/full code in posix_shm_example.c 

int segment_id = shmget(IPC_PRIVATE, 10*sizeof(char), SHM_R | SHM_W); 

pid = fork(); 
if (pid) { // parent 
     
  char *shared_memory = (char *)shmat(segment_id, NULL, 0); 
  sprintf(shared_memory, "hello"); 
  waitpid(pid, NULL, 0); 
  shmdt(shared_memory); 
  shmctl(segment_id, IPC_RMID, NULL); 
   
} else { // child 
     
  char *shared_memory = (char *)shmat(segment_id, NULL, 0); 
  fprintf(stdout,"Child: read '%s' in SHM\n", shared_memory); 
  shmdt(shared_memory); 

}



POSIX SHM Hello World

 Let’s look at and run the real/full code in posix_shm_example.c 

int segment_id = shmget(IPC_PRIVATE, 10*sizeof(char), SHM_R | SHM_W); 

pid = fork(); 
if (pid) { // parent 
     
  char *shared_memory = (char *)shmat(segment_id, NULL, 0); 
  sprintf(shared_memory, "hello"); 
  waitpid(pid, NULL, 0); 
  shmdt(shared_memory); 
  shmctl(segment_id, IPC_RMID, NULL); 
   
} else { // child 
     
  char *shared_memory = (char *)shmat(segment_id, NULL, 0); 
  fprintf(stdout,"Child: read '%s' in SHM\n", shared_memory); 
  shmdt(shared_memory); 

}

Note that the child needs the segment_id.  In this 
case, we’re ok because shmget() is called before 
fork(). But if the child was a different program (e.g., 
after an exec()), then the segment_id would need 
to be communicated to the child (e.g., via message 
passing!!)



The IPC Zoo
 There are many IPC abstractions that fall into the message passing or 

the shared memory category, or blur the lines 
 Signals, sockets, message queues, pipes, shared memory segments, files, … 

 Several abstractions share common characteristics but have a few key 
differences (e.g., a message queue and a socket) 

 There is a distinction between the abstraction that’s exposed by the API 
and the implementation of this API 

 In fact, many abstractions can be implemented on top of others 
 message queues on top of shared memory segments 
 message queues on top of files 
 message queues on top of sockets 
 shared memory segments on top of message passing 
 … 

 Some implementations are only for IPCs within a machine, some 
implementations are also  for across machines over a network 

 Let’s now talk about a very, very commonplace abstraction: pipes



Pipes

 One of the most ancient, yet simple, useful, 
and powerful IPC mechanism provided by 
OSes is typically called pipes  

 We explore this in a programming 
assignment, so it’s a good idea to pay close 
attention  

 But first, let’s take a little detour about UNIX 
file descriptors and output redirection... 



stdin, stdout, stderr
 In UNIX, every process comes with 3 already opened “files” 

 Not real files, but in UNIX “everything looks like a file”  
 These files, or streams, are: 

 stdin: the standard input stream  
 stdout: the standard output stream 
 stderr: the standard error stream  

 You’ve encountered these when developing code (C/C++, Java, Python, 
etc.)  

 e.g., printf writes to stdout 
 Each file in UNIX is associated to an integer file descriptor  

 An index into some “this process’ open files” table  
 By convention, the file descriptors for each standard stream are (see /
usr/include/unistd.h):  

 stdin: STDIN_FILENO = 0 
 stdout: STDOUT_FILENO = 1 
 stderr: STDERR_FILENO = 2 



Re-directing output
 Perhaps some of you have wondered how come something like ls > 
file.txt can work? 

 After all, ls has code that looks like:  
        fprintf(stdout, "%s", filename); 
 So how can this code magically knows to write to a file instead of to 

stdout??? 
 This is one of the famous UNIX “tricks” 
 In UNIX, when I open a new file, this file gets the first available file 

descriptor number  
 So, if I close stdout, and open a file right after, this file will have file 

descriptor 1 
 Therefore, printf() will write to it as if it were stdout  

 Because fprintf(stdout, ...) really means “write to file descriptor 1”  
 And I don’t need to change the code of ls at all!!!  
 Let’s see an example program…



Output Redirect Example

 This program will run ls -la  and write its output to file /tmp/stuff 
 Let’s look at output_redirect_example1.c

Example program fragment
... 
pid_t pid = fork();  
if (!pid) { // child  
  // close stdout 
  close(1); 
  // open a new file, which gets file descriptor 1 

  FILE ∗file = fopen(”/tmp/stuff”, ”w”); 
  // exec the ”ls −la” program 
  char* const arguments[] = {"ls", "-la", NULL}; 
  execv("ls", arguments);  
}  
...  



UNIX Pipes
 A pipe is a simple IPC mechanism between two processes 
 One can create a pipe so that process A can write to it and 

process B reads from it and B can read from the pipe  
 Available in the shell with the | symbol: the output of a process 

becomes the input of other(s) 
 Just like a file indirection, but to another process’ input stream 

 Example: Count the files whose names contain foo but not bar in 
the /tmp directory  

 List all files in /tmp: find /tmp -type f 
 Keep those with foo: grep foo 
 Remove those with bar: grep -v bar 
 Count the lines that remain: wc -l  

Putting everything together:  find /tmp -type f | grep foo 
| grep -v bar | wc -l  



popen(): fork() with a pipe!
 Very convenient library functions are popen() and pclose() 
 Sounds like “pipe open” and “pipe close”, but it’s MUCH more than that  
 popen() does: 

 Creates a (bi-directional) pipe, and we have to specify whether we’re going to 
read (“r”) or write (“w”) to it  

 Forks and execs a child process (e.g., ”ls -a”) 
 Returns the pipe, which is in fact a file (FILE *) 
 Both the parent and the child can “talk” through the pipe!  

 pclose() does: 
 Waits for the child process to complete 
 Closes the pipe  

 These are implemented with several system calls: fork, waitpid, pipe 
(which creates a pipe), close, open, dup  

 Re-implementing popen/pclose would be a bit too much here, but let’s 
just see an example program that uses it... 



popen() / pclose() Example

 This program prints all the output produced by ls -la 
 Almost all languages provide something like this: Python’s subprocess module, Java’s 

ProcessBuilder class, etc. 
 Let’s look at and run popen_example1.c 
 And then let’s look at and run popen_example2.c, which opens a pipe to write to

Example program fragment
// fork/exec a child process and get a pipe to READ from  
FILE ∗pipe = popen(”/usr/bin/ls −la”, ”r”);  

// Get lines of output from the pipe, which is just a FILE ∗, 
// until EOF is reached  
char buffer[2048]; 
while (fgets(buffer, 2048, pipe)) {  
  fprintf(stderr,"LINE: %s", buffer);  
} 

// Wait for the child process to terminate  
pclose(pipe); 



Higher-Level IPC?
 What we’ve seen so far are IPC abstractions for 

processes to exchange, essentially, bytes 
 With that one can do everything of course, since the 

bytes can be encoded/interpreted in arbitrary ways 
 Often IPC is used to ask another process to do 

something for us and send us back the result 
 This is conceptually like calling a method/function 

on the other process 
 A powerful abstraction has been proposed to do this 

more easily than with just byte messages: Remote 
Procedure Call (RPC)



RPC
 RPC provides a procedure invocation abstraction across 

processes (and actually across machines) 
 A client invokes a procedure in another process (almost) as 

it would invoke it directly itself 
 RPC has a lot of usages, of course for client-server 

applications (and microkernels!) 
 The “magic” is performed through a client stub (one stub for 

each RPC):  
 Marshal the parameters (converts structured data to bytes) 
 Send the data over to the server 
 Wait for the server’s answer 
 Unmarshal the returned values (convert bytes to structured data)  

 A lot of different implementations exist... including in Java 



 Java Remote Method Invocation (RMI)

 RPC in Java: Remote Method Invocation (RMI) 
 A process in a JVM can invoke a method of an 

object living in another JVM 
 Marshalling/Unmarshalling of data is 

performed by the JVM  
 Each object must be from a class that implements 

the java.io.Serializable interface 
 RMI hides all the gory details of RPC/IPC 
 See this Java RMI Tutorial for more info  
 We’ll come back to RMI later…

https://docs.oracle.com/javase/tutorial/rmi/


Conclusion
 We’ve seen two kinds of mechanisms for processes to 

communicate:  
 Message Passing: Within the kernel Space 
 Shared Memory: Outside the kernel Space  

 Both kinds of mechanisms are implemented in all 
mainstream OS and many variants and abstractions 
exist 

 Message Queues, Shared Memory Segments, Files, Signals, 
Sockets, Pipes, RPC 

 The line between message passing and shared memory 
is often blurred by abstractions, and abstractions of one 
kind can be implemented on top of abstractions of the 
other kind


