
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Inter-Process
Communications
(IPC)

Communicating Processes?
 So far we have seen independent processes

 Each process runs code independently
 Parents and aware of their children, and children are aware of their

parents, but they do not interact
 Besides the ability to wait for a child to terminate and to kill another process

 But often we need processes to cooperate
 To share information (e.g., access to common data)
 To speed up computation (e.g., to use multiple cores)
 Because it’s convenient (e.g., some applications are naturally

implemented as sets of interacting processes)
 But, processes cannot see each other’s address spaces!
 In general, the means of communication between cooperating

processes is called Inter-Process Communication (IPC)

Communication Models
 Process A needs to communicate with Process B

Process A

Process B

Available
Memory

Kernel

Message Passing
 Option #1: Message Passing

Kernel

Process A

Process B

Available
Memory

Msg

Message Passing
 Option #1: Message Passing

Kernel

Process A

Process B

Available
Memory

Msg

Msg

Data copy to a kernel buffer

Message Passing
 Option #1: Message Passing

Kernel

Process A

Process B

Available
Memory

Msg

Msg

Msg

Data copy from a kernel buffer

Message Passing
 Option #1: Message Passing

Kernel

Process A

Process B

Available
Memory

Msg

Msg

Process B has now the
message in its address
space

Message Passing
 Option #2: Shared Memory

Kernel

Process A

Process B

Available
Memory

Shared Memory

A zone of memory that
“belongs” to both processes’s
address space, so that each
can read/write at will it it and
the other can “see” it all

Pros and Cons
 Message Passing

 😀 Simple to implement in the
kernel

 😡 Limited by kernel size:
small messages

 😡 One syscall per operation
(send / receive): high
overhead

 😡 Cumbersome for users as
code can be hard to read with
sends/receives everywhere

 Shared memory
 😡 Not as easy to implement in

the kernel (stay tuned…)
 😀 Large messages allowed
 😀 Low overhead: a few

syscalls to set it up, and then no
kernel involvement thereafter

 😀 Convenient for users (after
setup, just normal memory
reads/writes)

 😡 Violates the principle of
memory protection between
processes, which can lead to
horrible bugs

Message Passing
 All OSes provide several IPC abstractions and API

 And so do many user-level libraries
 In your careers you will have to define abstraction and APIs for all kinds

of purposes
 Abstraction and API design choices often seem innocuous but can have

huge impact
 Good choices can lead to awesome success, bad choices can lead to abject

failures/rewrites
 Making good Abstraction/API choices is hard:

 Sufficiently expressive (can users do anything they might want to do with it?)
 Sufficiently convenient (can users do what they want easily?)
 Not too hard for you to implement/maintain/evolve

 Pedagogic challenge: Conveying to college students how important/
crucial this is, when it all seems like a bunch of pointless nitpicking

 You wouldn’t believe the number of hours spent daily on minuscule API details in
the software industry

 Because you haven’t yet experienced the above “snowball effect” of your poorly
designed Abstractions/API

POSIX Message Queue
 A standard message passing scheme supported by

UNIX-like systems are POSIX Message Queues
 There is a message queue “object” that has a name, a

maximum msg size, and a maximum number of msg in the
queue

 Both processes create their own queue object using the same
name (meaning they both have a reference to the same queue)

 The queue object supports send/receive operations
 This Abstraction/API makes several design choices

 One option called “direct communication” would have been “I
am process A and I send a message to process B”, which
requires that process B is created/known when A does the send

 Instead, this API uses “indirect communication” by using a
message queue object, which is more flexible

 Just for kicks let’s look at a hello world example…

POSIX MQ Hello World

 Let’s look at and run the real/full code in posix_mq_example.c
 Conceptually this is just like network communication, but within a machine
 There are SO many abstractions/implementations of message passing for all kinds

of scenarios/purposes, each with slight differences

pid_t pid = fork();

if (pid) { // parent

 mqd_t queue = mq_open(“mq”, O_CREAT | O_WRONLY, 0664, NULL);
 char msg[MSG_SIZE] = “Hello!";
 mq_send(queue, msg, MSG_SIZE, 1);
 waitpid(pid, NULL, 0);
 mq_close(queue);
 mq_unlink(MQ_NAME);

} else { // child

 mqd_t queue = mq_open(“mq”, O_CREAT | O_RDONLY, 0664, NULL);
 char msg[MSG_SIZE];
 mq_receive(queue, msg, MSG_SIZE, NULL);
 mq_close(queue);
 mq_unlink(MQ_NAME);

}

POSIX Shared Memory Segments
 Like there is a POSIX MQ API, there is a POSIX SHM (Shared

Memory) API
 The abstraction is that of a “shared memory segment” with a

simple API
 One process can create a shared memory segment
 Multiple processes can then attach it to their address spaces

 Bye bye memory protection
 It’s the processes’ (i.e., the developer’s) responsibility to make sure

that processes are not stepping on each other’s toes
 Once the setup is done, the OS is not involved

 What happens in shared memory stays in shared memory
 At some point, the shared memory segment is freed by the

requester
 Let’s look at a Hello World example…

POSIX SHM Hello World

 Let’s look at and run the real/full code in posix_shm_example.c

int segment_id = shmget(IPC_PRIVATE, 10*sizeof(char), SHM_R | SHM_W);

pid = fork();
if (pid) { // parent

 char *shared_memory = (char *)shmat(segment_id, NULL, 0);
 sprintf(shared_memory, "hello");
 waitpid(pid, NULL, 0);
 shmdt(shared_memory);
 shmctl(segment_id, IPC_RMID, NULL);

} else { // child

 char *shared_memory = (char *)shmat(segment_id, NULL, 0);
 fprintf(stdout,"Child: read '%s' in SHM\n", shared_memory);
 shmdt(shared_memory);

}

POSIX SHM Hello World

 Let’s look at and run the real/full code in posix_shm_example.c

int segment_id = shmget(IPC_PRIVATE, 10*sizeof(char), SHM_R | SHM_W);

pid = fork();
if (pid) { // parent

 char *shared_memory = (char *)shmat(segment_id, NULL, 0);
 sprintf(shared_memory, "hello");
 waitpid(pid, NULL, 0);
 shmdt(shared_memory);
 shmctl(segment_id, IPC_RMID, NULL);

} else { // child

 char *shared_memory = (char *)shmat(segment_id, NULL, 0);
 fprintf(stdout,"Child: read '%s' in SHM\n", shared_memory);
 shmdt(shared_memory);

}

Note that the child needs the segment_id. In this
case, we’re ok because shmget() is called before
fork(). But if the child was a different program (e.g.,
after an exec()), then the segment_id would need
to be communicated to the child (e.g., via message
passing!!)

The IPC Zoo
 There are many IPC abstractions that fall into the message passing or

the shared memory category, or blur the lines
 Signals, sockets, message queues, pipes, shared memory segments, files, …

 Several abstractions share common characteristics but have a few key
differences (e.g., a message queue and a socket)

 There is a distinction between the abstraction that’s exposed by the API
and the implementation of this API

 In fact, many abstractions can be implemented on top of others
 message queues on top of shared memory segments
 message queues on top of files
 message queues on top of sockets
 shared memory segments on top of message passing
 …

 Some implementations are only for IPCs within a machine, some
implementations are also for across machines over a network

 Let’s now talk about a very, very commonplace abstraction: pipes

Pipes

 One of the most ancient, yet simple, useful,
and powerful IPC mechanism provided by
OSes is typically called pipes

 We explore this in a programming
assignment, so it’s a good idea to pay close
attention

 But first, let’s take a little detour about UNIX
file descriptors and output redirection...

stdin, stdout, stderr
 In UNIX, every process comes with 3 already opened “files”

 Not real files, but in UNIX “everything looks like a file”
 These files, or streams, are:

 stdin: the standard input stream
 stdout: the standard output stream
 stderr: the standard error stream

 You’ve encountered these when developing code (C/C++, Java, Python,
etc.)

 e.g., printf writes to stdout
 Each file in UNIX is associated to an integer file descriptor

 An index into some “this process’ open files” table
 By convention, the file descriptors for each standard stream are (see /
usr/include/unistd.h):

 stdin: STDIN_FILENO = 0
 stdout: STDOUT_FILENO = 1
 stderr: STDERR_FILENO = 2

Re-directing output
 Perhaps some of you have wondered how come something like ls >
file.txt can work?

 After all, ls has code that looks like:
 fprintf(stdout, "%s", filename);
 So how can this code magically knows to write to a file instead of to

stdout???
 This is one of the famous UNIX “tricks”
 In UNIX, when I open a new file, this file gets the first available file

descriptor number
 So, if I close stdout, and open a file right after, this file will have file

descriptor 1
 Therefore, printf() will write to it as if it were stdout

 Because fprintf(stdout, ...) really means “write to file descriptor 1”
 And I don’t need to change the code of ls at all!!!
 Let’s see an example program…

Output Redirect Example

 This program will run ls -la and write its output to file /tmp/stuff
 Let’s look at output_redirect_example1.c

Example program fragment
...
pid_t pid = fork();
if (!pid) { // child
 // close stdout
 close(1);
 // open a new file, which gets file descriptor 1

 FILE ∗file = fopen(”/tmp/stuff”, ”w”);
 // exec the ”ls −la” program
 char* const arguments[] = {"ls", "-la", NULL};
 execv("ls", arguments);
}
...

UNIX Pipes
 A pipe is a simple IPC mechanism between two processes
 One can create a pipe so that process A can write to it and

process B reads from it and B can read from the pipe
 Available in the shell with the | symbol: the output of a process

becomes the input of other(s)
 Just like a file indirection, but to another process’ input stream

 Example: Count the files whose names contain foo but not bar in
the /tmp directory

 List all files in /tmp: find /tmp -type f
 Keep those with foo: grep foo
 Remove those with bar: grep -v bar
 Count the lines that remain: wc -l

Putting everything together: find /tmp -type f | grep foo
| grep -v bar | wc -l

popen(): fork() with a pipe!
 Very convenient library functions are popen() and pclose()
 Sounds like “pipe open” and “pipe close”, but it’s MUCH more than that
 popen() does:

 Creates a (bi-directional) pipe, and we have to specify whether we’re going to
read (“r”) or write (“w”) to it

 Forks and execs a child process (e.g., ”ls -a”)
 Returns the pipe, which is in fact a file (FILE *)
 Both the parent and the child can “talk” through the pipe!

 pclose() does:
 Waits for the child process to complete
 Closes the pipe

 These are implemented with several system calls: fork, waitpid, pipe
(which creates a pipe), close, open, dup

 Re-implementing popen/pclose would be a bit too much here, but let’s
just see an example program that uses it...

popen() / pclose() Example

 This program prints all the output produced by ls -la
 Almost all languages provide something like this: Python’s subprocess module, Java’s

ProcessBuilder class, etc.
 Let’s look at and run popen_example1.c
 And then let’s look at and run popen_example2.c, which opens a pipe to write to

Example program fragment
// fork/exec a child process and get a pipe to READ from
FILE ∗pipe = popen(”/usr/bin/ls −la”, ”r”);

// Get lines of output from the pipe, which is just a FILE ∗,
// until EOF is reached
char buffer[2048];
while (fgets(buffer, 2048, pipe)) {
 fprintf(stderr,"LINE: %s", buffer);
}

// Wait for the child process to terminate
pclose(pipe);

Higher-Level IPC?
 What we’ve seen so far are IPC abstractions for

processes to exchange, essentially, bytes
 With that one can do everything of course, since the

bytes can be encoded/interpreted in arbitrary ways
 Often IPC is used to ask another process to do

something for us and send us back the result
 This is conceptually like calling a method/function

on the other process
 A powerful abstraction has been proposed to do this

more easily than with just byte messages: Remote
Procedure Call (RPC)

RPC
 RPC provides a procedure invocation abstraction across

processes (and actually across machines)
 A client invokes a procedure in another process (almost) as

it would invoke it directly itself
 RPC has a lot of usages, of course for client-server

applications (and microkernels!)
 The “magic” is performed through a client stub (one stub for

each RPC):
 Marshal the parameters (converts structured data to bytes)
 Send the data over to the server
 Wait for the server’s answer
 Unmarshal the returned values (convert bytes to structured data)

 A lot of different implementations exist... including in Java

 Java Remote Method Invocation (RMI)

 RPC in Java: Remote Method Invocation (RMI)
 A process in a JVM can invoke a method of an

object living in another JVM
 Marshalling/Unmarshalling of data is

performed by the JVM
 Each object must be from a class that implements

the java.io.Serializable interface
 RMI hides all the gory details of RPC/IPC
 See this Java RMI Tutorial for more info
 We’ll come back to RMI later…

https://docs.oracle.com/javase/tutorial/rmi/

Conclusion
 We’ve seen two kinds of mechanisms for processes to

communicate:
 Message Passing: Within the kernel Space
 Shared Memory: Outside the kernel Space

 Both kinds of mechanisms are implemented in all
mainstream OS and many variants and abstractions
exist

 Message Queues, Shared Memory Segments, Files, Signals,
Sockets, Pipes, RPC

 The line between message passing and shared memory
is often blurred by abstractions, and abstractions of one
kind can be implemented on top of abstractions of the
other kind

