
Henri Casanova (henric@hawaii.edu)

ICS332 
Operating Systems 

Basics of CPU 
Scheduling



CPU Scheduling
! CPU Scheduling: The process by which the OS decides which 

processes/threads should run (and for how long) 
" Necessary in a multi-programming environment 
" Reminder: only READY processes/threads can be scheduled 

! In these lecture notes, like in our and most textbooks, I will use 
the word job, which should be understood as “process or 
thread” 

! When one says “scheduling” in the context of the OS, one 
typically means two things together: 

" The scheduling policy: “what the OS should do” 
" The scheduling mechanism: “how the OS does it” 

! Separating policy and mechanism is the way to go! 
" Remember the discussion of this issue in the Overview and Interfaces 

module (Lecture notes: A Brief History of Operating Systems)



Policy and Mechanisms
! The policy: a scheduling strategy 

" The broad goal is to improve system performance and 
productivity, including: 

! Maximize CPU utilization (whenever the CPU idle, pick a READY 
jobs to run)  

! Make jobs “happy” (jobs should feel like they don’t wait for the CPU 
too much, or too unfairly) 

! The mechanism: the dispatcher 
" The OS component that knows how to switch between jobs 

on the CPU (it implements context-switching) 
" It must be fast (i.e., low dispatcher latency)  

! There are strong theoretical underpinnings and a huge 
literature on the topic of scheduling but we will focus on 
pragmatic issues 



Long-term/Short-term Scheduling
! Long-term Scheduling 
! Select jobs from a submitted 

pool of jobs and loads them into 
memory 

! Orchestrate job executions in the 
long term O(minutes), O(hours) 

! Make scheduling decisions 
every O(minutes), O(hours) 

! Can construct complex 
schedules 

! Can use sophisticated decision 
algorithms (ics632)



Long-term/Short-term Scheduling
! Short-term Scheduling 
! Select already-in-memory jobs 

to run 
! Orchestrate job executions in 

the very short term 
O(milliseconds) 

! Make scheduling decisions 
every O(milliseconds) 

! Cannot make complex 
decisions 

! Use simple decision algorithms 
(these lecture notes)

! Long-term Scheduling 
! Select jobs from a submitted 

pool of jobs and loads them into 
memory 

! Orchestrate job executions in the 
long term O(minutes), O(hours) 

! Make scheduling decisions 
every O(minutes), O(hours) 

! Can construct complex 
schedules 

! Can use sophisticated decision 
algorithms (ics632)



Long-term/Short-term Scheduling

! OSes do short-term scheduling 
! Long-term scheduling done by non-OS software (e.g., batch scheduler)
! OSes do short-term scheduling 
! Long-term scheduling done by non-OS software (e.g., batch scheduler)

! Long-term Scheduling 
! Select jobs from a submitted 

pool of jobs and loads them into 
memory 

! Orchestrate job executions in the 
long term O(minutes), O(hours) 

! Make scheduling decisions 
every O(minutes), O(hours) 

! Can construct complex 
schedules 

! Can use sophisticated decision 
algorithms (ics632)

! Short-term Scheduling 
! Select already-in-memory jobs 

to run 
! Orchestrate job executions in 

the very short term 
O(milliseconds) 

! Make scheduling decisions 
every O(milliseconds) 

! Cannot make complex 
decisions 

! Use simple decision algorithms 
(these lecture notes)



CPU and I/O Bursts
! Most jobs alternate between CPU bursts and I/O bursts 
! CPU bursts: a sequence of CPU instructions that do whatever 

computation until a syscall is placed to do some “I/O” (actual I/O, 
waiting for something, etc.) 

! I/O bursts: a time during which the job cannot execute its next 
instruction because it’s waiting for the “I/O” to complete. The job 
is not running and is in the “blocked/waiting” state.  

CPU 
burst

I/O 
burst

CPU 
burst

I/O 
burst

CPU 
burst

time



! CPU-bound job: a job that mostly uses the CPU with 
mostly (possibly many) short  or few I/O bursts 
" e.g., a raytracer to render 3-D scenes 

! I/O-bound job: a job that mostly waits for I/O with 
mostly (possibly many) short or few I/O bursts 
" e.g., a program that copies a file (/bin/cp)

CPU- or I/O-bound jobs

CPU I/O 

I/O CPU

read scene  
description

render 
frame

write 
frame

write 
frame

write 
frame

render 
frame

render 
frame

allocate 
buffer

read block 
Into buffer 

write buffer 
to disk

write buffer 
to disk

read block 
Into buffer 

read block 
Into buffer 

write buffer 
to disk



The CPU Scheduling Challenge
! The OS keeps ready jobs (their PCBs) in a list: the Ready Queue 
! The OS must make scheduling decisions 

" Pick one of the jobs from the Ready Queue 
" Decide how long to give the CPU to the picked job 

! The big challenge is that the only thing the OS knows is the number 
of jobs in the system, but the job population can be very diverse 

" Some jobs are I/O-bound, some are CPU-bound, some are in between, 
some change behavior after some point 

" Some jobs will run for 0.001 sec and terminate, some jobs will run for hours 
! When you start a job, you don’t tell the OS: “Hi OS! This is a mostly I/

O-bound job at first that will run for 10 minutes, and then will become 
CPU-bound and run for 20 minutes” 

! Instead, you hit <enter>, double-click, call fork(), create a thread, and 
here is a new job that the OS knows almost nothing about that it 
should make scheduling decisions for



The Scheduling Problem
! Let’s take a VERY simplified/unrealistic view of the 

scheduling problem 
" 1.  All jobs arrive at the “same time” (within an epsilon) 
" 2.  Each job runs for the same amount of time  
" 3.  Once started, each job runs to completion 
" 4.  All jobs are 100% CPU-bound (no I/O) 
" 5.  The run-time of each job is known 

! We will remove assumptions as we go along… 

! Question: What do we want to achieve? 
! Which is really: which metric do we want to optimize? 
! A very natural metric is average job turnaround time



Job Turnaround Time

! Intuitively pretty obvious that owners of CPU-
bound jobs care about turnaround time 

! But for other jobs perhaps this metric makes little 
sense  
" e.g., your Web browser!  

! There are many, many other possible metrics 
" e.g., metrics that capture notions of fairness among 

jobs 

Tturnaround = Tcompletion - Tarrival



Simplest Algorithm: FCFS
! First Come First Serve 
! Say we have 3 jobs, each wanting to run for 10 seconds 
! These jobs are in some order in the Ready Queue, say: A, B, C

! The average turnaround time is: ((10-0)+(20-0)+(30-0)) / 3 = 20 
! This is 2x the average job duration, but that makes sense 

because we have competition among the jobs for the CPU

A B C

time10 20 30 40 50 60 70 800



FCFS: Convoy Effect
! Let’s remove one assumption: job A takes 50 seconds

! The average turnaround time is: (50+60+70) / 3 = 60 
! This is ~2.57x the average job duration (and we can make this 

arbitrarily bad of course, e.g.,if job A takes 100000 seconds) 
! Short jobs can be “stuck” behind long jobs 
! This convoy effect is basically: you want to buy a banana at the 

supermarket, but you arrive at the checkout at the “same time 
plus some epsilon” as somebody who has a cart with 100 items

A B C

time10 20 30 40 50 60 70 800



Another Idea: Shortest Job First (SJF)

! Dispatch short jobs first, which would give us

! The average turnaround time is: (10+20+70) / 3 = 33.3 
! This is ~1.42x the average job duration, which is much better than with FCFS 
! It turns out this SJF is optimal with our assumptions and our goal to optimize the 

average turnaround time 
! There is an elegant proof by contradiction based on assuming that an optimal 

schedule isn’t in the SJF order, swapping the order of two jobs, and showing 
that the new schedule is better, meaning that the previous one wasn’t optimal 

! What happens if jobs can arrive at different times?

AB C

time10 20 30 40 50 60 70 800



SJF with Jobs Arriving at Different Times
! Say A arrives at time 0, and B and C arrive at time 10 
! At time 0 the OS has to schedule job A (it’s the only one in the Ready Queue, 

and as far as it knows, no other job may arrive for the next decade)

! The average turnaround time is: ((50 - 0) + (60 - 10) + (70 - 10)) / 3 = 53.33 
! This is ~2.28x the average job duration 
! Jobs B and C are very “unhappy” as we still have a convoy effect 

! Arriving to the checkout lane 10 seconds after a person with a full cart is still bad 
! What can we do?

A B C

time10 20 30 40 50 60 70 800

B and C arrive



Preempting Jobs
! We need to remove the “Once started a job runs to completion” assumption 
! The OS must be able to preempt a job (kick it out of the CPU) 
! A simple algorithm: Shortest Time-to-Completion First (STCF) 

" Whenever a new job arrives, if it has shorter time-to-completion than the running 
job, then preempt the running job and run the new job  

" Whenever a job finishes, run the job with the shortest time-to-completion

! The average turnaround time is: ((70 - 0) + (20 - 10) + (30 - 10)) / 3 = 33.33 
! This is ~1.42x the average job duration 
! We fixed the convoy problem (not happening at the supermarket 🙁 )

A B C

time10 20 30 40 50 60 70 800

B and C arrive 
A is preempted

A

A is resumed



We Could Keep Going…
! Turns out that STCF is optimal for average turn-around time with 

the assumption that jobs can be preempted 
" Just like SJF is optimal for average turn-around time when jobs cannot be 

preempted  
! But now we have a starvation problem: a job may never run  
! Anybody sees why?  
! A stream of “short” jobs can forever overtake a long job!  

" e.g., Somebody with a full cart at the supermarket is in line, and every 
second somebody arrives to buy just a banana, which takes one second, 
forever 

! The scheduling problem is just very hard 
! It is a long-standing and still very active area of research in 

Computer Science 
! Most of this research, however, is not at the OS level because…



The OS Does not Know Job Durations!

! But remember, you don’t tell the OS how long your program is 
going to run when you start it 

" Unlike in a batch system, like on “supercomputers” in which you do, and 
if your job runs longer then it’s killed! 

" We could design OSes like this, but people would hate them 
immediately  

! So the “nice” algorithms we just saw like SJF or STCF cannot be 
implemented in the OS 

" Just like most sophisticated algorithms in the scheduling research 
literature 

! One important lesson from these algorithms, though, is that job 
preemption is necessary to avoid the convoy effect 

! So what can the OS do?  
! If you don’t know how long jobs take, you run each job for a little 

bit, preempt it, run another job, and keep going forever!



Round-Robin (RR) Scheduling
! What OSes do is Round-Robin Scheduling: Let a job run for at 

most a little bit, then preempt it, then run the next job, etc.  
! The (maximum) amount of time a job runs for before preemption 

is called the time quantum (or scheduling quantum, or time slice)  
! Same Example as for STCF in a previous slide: 

" Job A (50sec) arrives at time 0, Jobs B (10sec) and C (10sec) arrive at 
time 10 

" Say the time quantum is 5s

A B C

time10 20 30 40 50 60 700

! Average turnaround time: ((70 - 0) + (30 - 10) + (35 - 10)) / 3 = 38.33 
! 1.64x the average job duration 
! Compared to 1.42x with STCF if the OS had known (magically?) all job 

durations - not bad at all!



RR Time Quantum
! Key question: How to pick the time quantum? 
! Time Quantum too large: poor response time 

" A job may start its first time quantum a “long” time after it arrived into 
the system, which will then cause it to have a poor response time 

" The larger the time quantum, the closer RR scheduling gets to being 
FCFS scheduling! 

! Time Quantum too small: too much context-switching 
overhead  

" Say you have a bunch of CPU-intensive jobs, a 9 ms time quantum, 
and a 1ms context switching overhead 

" Then your CPU spends 10% of its time doing context-switches 
(instead of doing useful work)!  

" This is why OS developers put a lot of working into making context-
switching as fast as possible  

! So that time quanta can be relatively small, within limits



The Story So Far

! Turn-around time seems like a reasonable metric 
! We can have algorithms that do ok for that metric 
! Especially if we allow jobs to be preempted 
! But turn-around time is impossible to optimize for 

if we don’t know the job durations! 
! So we instead use RR Scheduling 

! Bottom Line: All OS Schedulers use flavors of 
RR Scheduling 

! Let’s look at our assumptions again….



Back to Our Assumptions

! Our original assumptions 
" 1.  All jobs arrive at the “same time” (within an 

epsilon) 
" 2.  Each job runs for the same amount of time  
" 3.  Once started, each job runs to completion 
" 4.  All jobs are 100% CPU-bound (no I/O) 
" 5.  The run-time of each job is known 

! Let’s now remove assumption #4: Each job 
alternates between CPU bursts and I/O bursts



One Option: Do Nothing
! The OS could just not care, and let a job do its I/O (after all, the 

time quantum is about CPU usage, and I/O doesn’t use the CPU) 
! Example with two jobs, time quantum of 20 sec

A B

time10 20 30 40 50 60 700

CPU

Disk

! This is terrible, anybody sees why?



One Option: Do Nothing
! The OS could just not care, and let a job do its I/O (after all, the 

time quantum is about CPU usage, and I/O doesn’t use the CPU) 
! Example with two jobs, time quantum of 20 sec

A B

time10 20 30 40 50 60 700

CPU

Disk

! Horrible waste of the CPU: stays idle during I/O



Scheduling Around I/O?

! A much better schedule would be:

A B

time10 20 30 40 50 60 700

CPU

Disk

! This is what Oses try to achieve 
! In this example it works beautifully because A does 20 

seconds of I/O, which is exactly the time quantum duration 
! It’s not always this “clean”



Scheduling Around I/O?

! A much better schedule would be:

A B

time10 20 30 40 50 60 700

CPU

Disk

! When a Job does I/O, it vacates the CPU 
! When the I/O is done, the Job is placed in (the back of) the 

Ready Queue, and will be scheduled as normal in the future



In-class Exercise
! Consider the following jobs:  

" A: CPU burst time 3ms, I/O burst time 3ms 
" B: CPU burst time 6ms, I/O burst time 3ms  
" Both jobs alternate forever between CPU and I/O bursts, starting with a CPU burst 
" I/O activities from the jobs don’t impact each other. Say A uses the Disk and B uses 

the NIC 
! At time t = 0, both are in the ready queue (A is first) 
! The OS uses Round-Robin Scheduling with a time quantum of 5ms  

! Question #1: “Plot” the CPU utilization time-line for 29ms  
" Use letter A for 1ms of execution of job A 
" Use letter B for 1ms of execution of job B 
" Use letter I for 1ms of idle time 
" Example “plot”: AABIIIAAAABIIB…  

! Question #2: On average, in the long run, how much time does A spend in 
the Ready state each time it becomes Ready? 



Solution

CPU

Disk

NIC

AAA

" A: CPU=3ms, I/O=3ms; B: CPU=6ms, I/O=3ms  
" Time Quantum = 5ms

A’s 1st time quantum, which is 
not fully utilized because A’s 

CPU burst is smaller than the 
time quantum duration



Solution

CPU

Disk

NIC

AAABBBBB

   AAA  

" A: CPU=3ms, I/O=3ms; B: CPU=6ms, I/O=3ms  
" Time Quantum = 5ms

B’s 1st time quantum, which is fully 
utilized because B’s CPU burst is smaller 

than the time quantum duration, and B 
isn’t done with its first CPU burst!

A’s 1st I/O burst, at the end of which A 
goes back to the Ready Queue



Solution

CPU

Disk

NIC

AAABBBBBAAA

   AAA  

" A: CPU=3ms, I/O=3ms; B: CPU=6ms, I/O=3ms  
" Time Quantum = 5ms

A’s 2nd time quantum



Solution

CPU

Disk

NIC

AAABBBBBAAAB

   AAA     AAA   

" A: CPU=3ms, I/O=3ms; B: CPU=6ms, I/O=3ms  
" Time Quantum = 5ms

B’s 2nd time quantum, which is not 
fully utilized because there is only 

1sec left to do in B’s first CPU burst 

A’s 2st I/O burst, at the end of which A 
goes back to the Ready Queue



Solution

CPU

Disk

NIC

AAABBBBBAAABII

   AAA     AAA   

            BBB

" A: CPU=3ms, I/O=3ms; B: CPU=6ms, I/O=3ms  
" Time Quantum = 5ms

2ms of Idle time because 
both jobs are doing I/O!

B’s 1st I/O burst, at the end of which B 
goes back to the Ready Queue



Solution

CPU

Disk

NIC

AAABBBBBAAABIIAAA

   AAA     AAA     

            BBB         

" A: CPU=3ms, I/O=3ms; B: CPU=6ms, I/O=3ms  
" Time Quantum = 5ms

A’s 3rd time quantum



Solution

CPU

Disk

NIC

AAABBBBBAAABIIAAABBBBBAAABIIAAA…

   AAA     AAA   AAA     AAA

            BBB           BBB

" A: CPU=3ms, I/O=3ms; B: CPU=6ms, I/O=3ms  
" Time Quantum = 5ms

And so on forever with this repeating pattern



Solution

CPU

Disk

NIC

AAABBBBBAAABIIAAABBBBBAAABIIAAA…

   AAA     AAA   AAA     AAA

            BBB           BBB

" A: CPU=3ms, I/O=3ms; B: CPU=6ms, I/O=3ms  
" Time Quantum = 5ms

When A becomes ready, every other time it can’t run for 2 sec, 
and every other time it runs immediately. On average it spends 

1ms in the Ready State



Conclusion
! Based on what we’ve said so far, designing an OS 

scheduler is easy?  
" 1.  Pick a time-quantum (based on how fast context-

switching is)  
" 2.  Do Round-Robin scheduling  
" 3.  Treat each CPU burst as a job and kick jobs off the CPU 

as soon as they do I/O  

! This is the basics 
! But turns out, if this is all you do in your OS scheduler, 

things are not going to be great for users in practice 
! See the next set of lecture notes….


