
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Virtual Memory and
Paging (1)

Conclusion (Previous Module)
 Assumption so far: Each process is in a contiguous address space

 I’ll assume a single segment, for simplicity (“address space” = “segment” in these
lecture notes)

 😀 Address virtualization is simple
 Just a base register and a limit register, a comparison, an addition

 😳 No “best” memory allocation strategies
 First Fit, Worst Fit, Best Fit, others??

 😡 Fragmentation can be very large
 RAM is wasted

 🤬 There can be process starvation in spite of sufficient available RAM due
to fragmentation

 100 1MiB holes don’t allow a 100MiB process to run!
 Conclusion: Our base assumption is flawed!

 So.... address spaces shouldn’t be contiguous!?!

Non-Contiguous Address Space

Kernel

Memory
0

100

1000

P1

500

P2
600

800

P4

No room for P4?

Non-Contiguous Address Space

Kernel

Memory
0

100

1000

P1

500

P2
600

800

Let’s “chop it up”

P4

P4

Non-Contiguous Address Space

Kernel

Memory
0

100

1000

P1

500

P2
600

800

And now it “fits”

P4

P4

Kernel

Memory
0

100

1000

P1

500

P2
600

800

P4

P4

The Solution: “Paging”
 Our solution: break up address spaces into smaller chunks
 Should we have chunks of variable size like we just did on the

previous example?
 Not a good idea as this is a well-known difficult problem

algorithmically: Bin Packing
 Known to be NP-hard

 We really don’t want for the OS to have to solve some NP-
hard problem

 But if chunk sizes are fixed, it all becomes easy!
 No longer NP-hard

 So that’s what we do!
 Each process’ address spaces in split into same-size “pages”
 This is called Paging

Paging
 The physical memory is split in fixed-

size frames, and each frame can hold
a page (frame size = page size)

 A page is “virtual” (or “logical”): Virtual
Page Number (VPN)

 A frame is physical: Physical Frame
Number (PFN)

 And just like that, we have non-
contiguous memory allocation

 We still have internal fragmentation,
but never external fragmentation!

Kernel

Kernel

P1 - page 0

P2 - page 2

P1 - page 3

P3 - page 2

P2 - page 1

P2 - page 4

P2 - page 0

P3 - page 1

P3 - page 0

P1 - page 1

P2 - page 3

P1 - page 2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Kernel

Paging
 The physical memory is split in fixed-

size frames, and each frame can hold
a page (frame size = page size)

 A page is “virtual” (or “logical”): Virtual
Page Number (VPN)

 A frame is physical: Physical Frame
Number (PFN)

 And just like that, we have non-
contiguous memory allocation

 We still have internal fragmentation,
but never external fragmentation!

Kernel

Kernel

P1 - page 0

P2 - page 2

P1 - page 3

P3 - page 2

P2 - page 1

P2 - page 4

P2 - page 0

P3 - page 1

P3 - page 0

P1 - page 1

P2 - page 3

P1 - page 2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Kernel

Paging
 The physical memory is split in fixed-

size frames, and each frame can hold
a page (frame size = page size)

 A page is “virtual” (or “logical”): Virtual
Page Number (VPN)

 A frame is physical: Physical Frame
Number (PFN)

 And just like that, we have non-
contiguous memory allocation

 We still have internal fragmentation,
but never external fragmentation!

Kernel

Kernel

P1 - page 0

P2 - page 2

P1 - page 3

P3 - page 2

P2 - page 1

P2 - page 4

P2 - page 0

P3 - page 1

P3 - page 0

P1 - page 1

P2 - page 3

P1 - page 2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Kernel

P1 - page 0

P1 - page 3

P1 - page 1

P1 - page 2

P1’s LOGICAL address space

Paging
 The physical memory is split in fixed-

size frames, and each frame can hold
a page (frame size = page size)

 A page is “virtual” (or “logical”): Virtual
Page Number (VPN)

 A frame is physical: Physical Frame
Number (PFN)

 And just like that, we have non-
contiguous memory allocation

 We still have internal fragmentation,
but never external fragmentation!

Kernel

Kernel

P1 - page 0

P2 - page 2

P1 - page 3

P3 - page 2

P2 - page 1

P2 - page 4

P2 - page 0

P3 - page 1

P3 - page 0

P1 - page 1

P2 - page 3

P1 - page 2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Kernel

P1 - page 0

P1 - page 3

P1 - page 1

P1 - page 2

P1’s LOGICAL address space

P1’s PHYSICAL address space

Paging
 The physical memory is split in fixed-

size frames, and each frame can hold
a page (frame size = page size)

 A page is “virtual” (or “logical”): Virtual
Page Number (VPN)

 A frame is physical: Physical Frame
Number (PFN)

 And just like that, we have non-
contiguous memory allocation

 We still have internal fragmentation,
but never external fragmentation!

Kernel

Kernel

P1 - page 0

P2 - page 2

P1 - page 3

P3 - page 2

P2 - page 1

P2 - page 4

P2 - page 0

P3 - page 1

P3 - page 0

P1 - page 1

P2 - page 3

P1 - page 2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Kernel

Paging
 The physical memory is split in fixed-

size frames, and each frame can hold
a page (frame size = page size)

 A page is “virtual” (or “logical”): Virtual
Page Number (VPN)

 A frame is physical: Physical Frame
Number (PFN)

 And just like that, we have non-
contiguous memory allocation

 We still have internal fragmentation,
but never external fragmentation!

Kernel

Kernel

P1 - page 0

P2 - page 2

P1 - page 3

P3 - page 2

P2 - page 1

P2 - page 4

P2 - page 0

P3 - page 1

P3 - page 0

P1 - page 1

P2 - page 3

P1 - page 2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Paging and Addressing
 In the previous picture you see that a process’ address space

is non-contiguous and pages are not even in the “right order”
 When we used to say “some byte is at offset X from the

beginning of the address space”, now we have to say “some
byte is at offset Z from the beginning of the Y-th page of the
address space”

 So when we’re given a logical address, we have to compute:
the virtual page number and the offset within that page

 For instance, if the page/frame size is 1000 bytes, and we’re
talking about the 1200-th byte in the address space, then we
say that the virtual page number is 1 and the offset is 200!

 Now you see why we talked about parking lots in the Counting and
Addressing module (spots are bytes, blocks of spots are pages)

Virtual Page number
 Virtual addresses issued by the CPU are split into two parts

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0

p = 123 d = 1712

 The virtual/logical page number: p
 The offset within the page: d
 “Read the value at address x” becomes “read the value at

offset d in page p”

Virtual Page number
 Virtual addresses issued by the CPU are split into two parts

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0

p = 123 d = 1712

 The virtual/logical page number: p
 The offset within the page: d
 “Read the value at address x” becomes “read the value at

offset d in page p”

In the above example, how many
pages can the process have?

Virtual Page number
 Virtual addresses issued by the CPU are split into two parts

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0

p = 123 d = 1712

 The virtual/logical page number: p
 The offset within the page: d
 “Read the value at address x” becomes “read the value at

offset d in page p”

In the above example, how many
pages can the process have?
8 bits → 28 = 256 pages

Virtual Page number
 Virtual addresses issued by the CPU are split into two parts

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0

p = 123 d = 1712

 The virtual/logical page number: p
 The offset within the page: d
 “Read the value at address x” becomes “read the value at

offset d in page p”

In the above example, how big is
each page?

Virtual Page number
 Virtual addresses issued by the CPU are split into two parts

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0

p = 123 d = 1712

 The virtual/logical page number: p
 The offset within the page: d
 “Read the value at address x” becomes “read the value at

offset d in page p”

In the above example, how big is
each page?
11 bits → 211 = 2KiB in a page

Virtual Page number
 Virtual addresses issued by the CPU are split into two parts

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0

p = 123 d = 1712

 The virtual/logical page number: p
 The offset within the page: d
 “Read the value at address x” becomes “read the value at

offset d in page p”

 The process still has the illusion of a contiguous address space
starting at page 0, continuing at page 1, etc.

 But in reality (i.e., in the physical RAM), each page is in a
memory frame anywhere: We say “page p is in frame f ”

Virtual Page number
 Virtual addresses issued by the CPU are split into two parts

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0

p = 123 d = 1712

 The virtual/logical page number: p
 The offset within the page: d
 “Read the value at address x” becomes “read the value at

offset d in page p”

 The process still has the illusion of a contiguous address space
starting at page 0, continuing at page 1, etc.

 But in reality (i.e., in the physical RAM), each page is in a
memory frame anywhere: We say “page p is in frame f ”

 Obvious Question: how do we know in which frame a page is??

Page-to-Frame Translation
 The Virtual Page Number (VPN) has to be translated to

the corresponding Physical Frame Number (PFN)
 This is more sophisticated address translation scheme

than what we saw in the previous module for contiguous
memory allocation

 Remember from the previous slide: instead of “read the
value at address x”, a program program does “read the
value at offset d in page p”

 Therefore we need to keep track for each process of the
mapping between each of its pages and the physical
frame that page is in

 To this end, each process has a page table...

Page Table Example

Kernel

free

free

free

Physical
Memory

F#

0

1

2

3

4

5

6

7 free

free

free

free
 Let’s consider a system where the

physical memory consists of 8
frames

 The physical memory has some size,
and the OS defines the frame/page
size

 Let’s say the Kernel fits in one
frame

Page Table Example

Page 0

Page 1

Page 2

Page 3

Logical
Address
Space

Kernel

free

free

free

Physical
Memory

F#

0

1

2

3

4

5

6

7 free

free

free

free

 Let’s consider a process
whose address space
fits in 4 pages

 The OS will place these
pages in some of the
frames…

Page Table Example

Page 0

Page 1

Page 2

Page 3

Logical
Address
Space

Page 0

Page 2

Page 1

Page 3

Kernel

free

free

free

Physical
Memory

F#

0

1

2

3

4

5

6

7

 Let’s consider a process
whose address space
fits in 4 pages

 The OS will place these
pages in some of the
frames…

 For instance, as shown
on the right

 The OS will maintain a
table that maps each
page # to a frame #…

Page Table Example

Page 0

Page 1

Page 2

Page 3

Logical
Address
Space

Page 0

Page 2

Page 1

Page 3

Kernel

free

free

free

Physical
Memory

F#

0

1

2

3

4

5

6

7Page
Table

0
1
2
3

1
4
3
7

Page Frame

Page Table Example

Page 0

Page 1

Page 2

Page 3

Logical
Address
Space

Page 0

Page 2

Page 1

Page 3

Kernel

free

free

free

Physical
Memory

F#

0

1

2

3

4

5

6

7Page
Table

0
1
2
3

1
4
3
7

Page Frame

This entry means that
page 1 is in frame 4

Page Size
 The page size is defined by the architecture

 x86-64: 4 KiB, 2 MiB, and 1 GiB
 ARM: 4 KiB, 64 KiB, and 1 MiB

 The page size in bytes is always a power of 2
 The pagesize command gives you the page size on UNIX-

like systems
 For instance, on my laptop: 16KiB

 You can easily reconfigure your OS to use a different page
size

 But that page size has to be supported by the hardware
 We’ll understand why you may want smaller/bigger pages

later...

Page Size: Address Decomposition

 Say the size of the logical address space is 2m bytes
 Say a page is 2n bytes (n < m), then...

 The n low-order bits of a logical address are the offset into
the page

 offset ranges between 0 and 2n − 1, each one corresponding to a
byte in the page

 The remaining m − n high-order bits are the logical page
number

 We already saw this on an example! let’s see it on another
example again…

Example
 Physical memory size = 25 = 32 bytes

Example
 Physical memory size = 25 = 32 bytes
 How many bits in a physical address?

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Example
 Physical memory size = 25 = 32 bytes
 How many bits in a physical address?

 How many bits are necessary to
address 25 thingies?

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

 Physical memory size = 25 = 32 bytes
 How many bits in a physical address?

 How many bits are necessary to
address 25 thingies?

5 bits

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Example

Example
 Physical memory size = 25 = 32 bytes
 5-bit physical addresses

0 - 00000
1 - 00001
2 - 00010
3 - 00011
4 - 00100
5 - 00101
6 - 00110
7 - 00111
8 - 01000
9 - 01001

10 - 01010
11 - 01011
12 - 01100
13 - 01101
14 - 01110
15 - 01111
16 - 10000
17 - 10001
18 - 10010
19 - 10011
20 - 10100
21 - 10101
22 - 10110
23 - 10111
24 - 11000
25 - 11001
26 - 11010
27 - 11011
28 - 11100
29 - 11101
30 - 11110
31 - 11111

Example
 Physical memory size = 25 = 32 bytes
 5-bit physical addresses
 Say we pick frame size = 4 bytes

 e.g., Frame #2 contains values at
physical addresses 8, 9, 10, 11

 Therefore we also pick page size = 4
bytes

0 - 00000
1 - 00001
2 - 00010
3 - 00011
4 - 00100
5 - 00101
6 - 00110
7 - 00111
8 - 01000
9 - 01001

10 - 01010
11 - 01011
12 - 01100
13 - 01101
14 - 01110
15 - 01111
16 - 10000
17 - 10001
18 - 10010
19 - 10011
20 - 10100
21 - 10101
22 - 10110
23 - 10111
24 - 11000
25 - 11001
26 - 11010
27 - 11011
28 - 11100
29 - 11101
30 - 11110
31 - 11111

Example
 Physical memory size = 25 = 32 bytes
 5-bit physical addresses
 Say we pick frame size = 4 bytes

 e.g., Frame #2 contains values at
physical addresses 8, 9, 10, 11

 Therefore we also pick page size = 4
bytes

0 - 00000
1 - 00001
2 - 00010
3 - 00011
4 - 00100
5 - 00101
6 - 00110
7 - 00111
8 - 01000
9 - 01001

10 - 01010
11 - 01011
12 - 01100
13 - 01101
14 - 01110
15 - 01111
16 - 10000
17 - 10001
18 - 10010
19 - 10011
20 - 10100
21 - 10101
22 - 10110
23 - 10111
24 - 11000
25 - 11001
26 - 11010
27 - 11011
28 - 11100
29 - 11101
30 - 11110
31 - 11111

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

Example
 Physical memory size = 25 = 32 bytes
 5-bit physical addresses
 Say we pick frame size = 4 bytes

 e.g., Frame #2 contains values at
physical addresses 8, 9, 10, 11

 Therefore we also pick page size = 4
bytes

 How many 4-byte frames are there?

0 - 00000
1 - 00001
2 - 00010
3 - 00011
4 - 00100
5 - 00101
6 - 00110
7 - 00111
8 - 01000
9 - 01001

10 - 01010
11 - 01011
12 - 01100
13 - 01101
14 - 01110
15 - 01111
16 - 10000
17 - 10001
18 - 10010
19 - 10011
20 - 10100
21 - 10101
22 - 10110
23 - 10111
24 - 11000
25 - 11001
26 - 11010
27 - 11011
28 - 11100
29 - 11101
30 - 11110
31 - 11111

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

25 (bytes)

22 (bytes / frame)
= 23 = 8 frames

Example
 Physical memory size = 25 = 32 bytes
 5-bit physical addresses
 frame / page size = 4 bytes
 Say we have a process with a 16-byte

address space
 Therefore is has 16/4 = 4 pages

 Say its bytes have values a, b, c, …

0 - 00000
1 - 00001
2 - 00010
3 - 00011
4 - 00100
5 - 00101
6 - 00110
7 - 00111
8 - 01000
9 - 01001

10 - 01010
11 - 01011
12 - 01100
13 - 01101
14 - 01110
15 - 01111
16 - 10000
17 - 10001
18 - 10010
19 - 10011
20 - 10100
21 - 10101
22 - 10110
23 - 10111
24 - 11000
25 - 11001
26 - 11010
27 - 11011
28 - 11100
29 - 11101
30 - 11110
31 - 11111

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

Example
 Physical memory size = 25 = 32 bytes
 5-bit physical addresses
 frame / page size = 4 bytes
 How many bits in a virtual address for

that process?

0 - 00000
1 - 00001
2 - 00010
3 - 00011
4 - 00100
5 - 00101
6 - 00110
7 - 00111
8 - 01000
9 - 01001

10 - 01010
11 - 01011
12 - 01100
13 - 01101
14 - 01110
15 - 01111
16 - 10000
17 - 10001
18 - 10010
19 - 10011
20 - 10100
21 - 10101
22 - 10110
23 - 10111
24 - 11000
25 - 11001
26 - 11010
27 - 11011
28 - 11100
29 - 11101
30 - 11110
31 - 11111

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

a
b
c
d
e
f
g
h

i
j
k
l
m
n
o
p

5
6
1
2

0
1
2
3

p # f #

Example
 Physical memory size = 25 = 32 bytes
 5-bit physical addresses
 frame / page size = 4 bytes
 How many bits in a virtual address for

that process?
 2-bit page index (22 pages)
 2-bit offset (22 bytes in a page)
 4-bit addresses

0 - 00000
1 - 00001
2 - 00010
3 - 00011
4 - 00100
5 - 00101
6 - 00110
7 - 00111
8 - 01000
9 - 01001

10 - 01010
11 - 01011
12 - 01100
13 - 01101
14 - 01110
15 - 01111
16 - 10000
17 - 10001
18 - 10010
19 - 10011
20 - 10100
21 - 10101
22 - 10110
23 - 10111
24 - 11000
25 - 11001
26 - 11010
27 - 11011
28 - 11100
29 - 11101
30 - 11110
31 - 11111

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

a
b
c
d
e
f
g
h

i
j
k
l
m
n
o
p

5
6
1
2

0
1
2
3

p # f #

Example
 What is the logical address of byte “g”?
 Logical @ = (page #) * (page size) +

offset
 Page = 1, Offset = 2 (often written 1:2)
 Logical @ = 1x4 + 2 = 6

0 - 00000
1 - 00001
2 - 00010
3 - 00011
4 - 00100
5 - 00101
6 - 00110
7 - 00111
8 - 01000
9 - 01001

10 - 01010
11 - 01011
12 - 01100
13 - 01101
14 - 01110
15 - 01111
16 - 10000
17 - 10001
18 - 10010
19 - 10011
20 - 10100
21 - 10101
22 - 10110
23 - 10111
24 - 11000
25 - 11001
26 - 11010
27 - 11011
28 - 11100
29 - 11101
30 - 11110
31 - 11111

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

a
b
c
d
e
f
g
h

i
j
k
l
m
n
o
p

5
6
1
2

0
1
2
3

p # f #

Example
 What is the physical address of byte “g”?
 Physical @ = (frame #) * (page size) +

offset
 Page = 1 is in Frame 6
 Same Offset = 2
 Physical @ = 6x4 + 2 = 26

0 - 00000
1 - 00001
2 - 00010
3 - 00011
4 - 00100
5 - 00101
6 - 00110
7 - 00111
8 - 01000
9 - 01001

10 - 01010
11 - 01011
12 - 01100
13 - 01101
14 - 01110
15 - 01111
16 - 10000
17 - 10001
18 - 10010
19 - 10011
20 - 10100
21 - 10101
22 - 10110
23 - 10111
24 - 11000
25 - 11001
26 - 11010
27 - 11011
28 - 11100
29 - 11101
30 - 11110
31 - 11111

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

a
b
c
d
e
f
g
h

i
j
k
l
m
n
o
p

5
6
1
2

0
1
2
3

p # f #

In-class Exercise (1)

 A computer has 4 GiB of RAM with a page size
of 8KiB. Processes have 1 GiB address spaces.
 How many bits are used for physical addresses
 How many bits are used for logical addresses
 How many bits are used for logical page numbers?

In-class Exercise (1)
 A computer has 4 GiB of RAM with a page size of 8KiB.

Processes have 1 GiB address spaces.
 How many bits are used for physical addresses

 Physical RAM: 4 GiB = 232 bytes
 → 32-bit physical addresses

 How many bits are used for logical addresses
Logical address space: 1 GiB = 230 bytes
 → 30-bit physical addresses

 How many bits are used for logical page numbers?
Page size = 213 bytes
Number of pages in logical address space: 230/213 = 217
 → 17-bit logical page numbers
 (and 13-bit offsets)

In-class Exercise (2)

 Logical addresses are 44-bit, and a process can
have up to 227 pages. What is the page size?

In-class Exercise (2)

 Logical addresses are 44-bit, and a process can
have up to 227 pages. What is the page size?

The address space can have up to 244 bytes

There are up to 227 pages

Therefore, a page is 244 / 227 = 217 bytes

In-class Exercise (3)

 On my computer the page size is 16 KiB, and
my process’ address space is 4GiB.

 How many bits are used for the page number in
a logical address?

In-class Exercise (3)
 On my computer the page size is 16 KiB, and my process’

address space is 4GiB.
 How many bits are used for the page number in a logical

address?
The address space contains 232 bytes

A page is 214 bytes

Therefore, my address space has 232/214 = 218 pages

Therefore, we need 18 bits for the page number in a logical
address (and we have 14 bits in the offset)

In-class Exercise (4)

 A computer has 32-bit physical addresses. The
logical page number in a logical address is 14-
bit. A process can have up to a 2GiB address
space

 Let’s consider a process with currently a 1GiB
address space (i.e., it could get up to another
1GiB during execution).

 What is the page size?
 How many entries in the process’ page table

currently point to pages that are part of the
address space?

In-class Exercise (4)
 A computer has 32-bit physical addresses. The logical page number in a

logical address is 14-bit. A process can have up to a 2GiB address space
 Let’s consider a process with currently a 1GiB address space (i.e., it can get

up to another 1GiB during execution).
 What is the page size?
Bytes in 2GiB (the max address space): 231
Therefore: 31-bit logical addresses
Therefore: 31 - 14 = 17-bit offsets
Therefore: 217 bytes in a page
Therefore: 128KiB pages

 How many entries in the process’ page table currently point to pages that
are part of the address space?

The process has a 1GiB = 230-byte address space
Number of pages in the address space: 230/217 = 213
Therefore: there are 213 entries in the page table, each pointing to one page

In-class Exercise (5)
 Logical addresses are 40-bit, and a process can

use at most 1/4 of the physical RAM.
 How big is the RAM?
 A process has at most 222 pages on this

system. How many bits are used for the “offset”
part of logical addresses?

In-class Exercise (5)
 Logical addresses are 40-bit, and a process can use at most

1/4 of the physical RAM.
 How big is the RAM?

With 40-bit logical addresses, an address space is at most 240
bytes
So the RAM is 4 times as big: 242 bytes, which is 4TiB

 A process has at most 222 pages on this system. How
many bits are used for the “offset” part of logical
addresses?

Since we have 222 pages, 22 bits are used for the page
number
Therefore 40 - 22 = 18 bits are used for the offset

In-class Exercise (6)
 Consider a system with 4-byte pages. A process

has the following entries in its page table:

logical physical
0 4
1 5
2 30

 What is the physical address of the byte with logical address 2?
 What is the physical address of the byte with logical address 9?

In-class Exercise (6)
 Consider a system with 4-byte pages. A process has the following entries in its

page table:
logical physical

0 4
1 5
2 30

 What is the physical address of the byte with logical address 2?
 The byte with logical address 2 is the 3rd byte in page 0 (because that page contains

the bytes at addresses 0, 1, 2, and 3)
 Page 0, according to the page table is in physical frame 4
 The first byte of physical frame 0 is at physical address 4 × 0 = 0 (the first byte in

physical RAM)
 The first byte of physical frame 1 is at physical address 4 × 1 = 4 (the fifth byte in

physical RAM)
 …
 The first byte of physical frame 4 is at physical address 4 × 4 = 16
 The 3rd byte of physical frame is thus at address 16 + 2
 Therefore, the byte at logical address 2 is at physical address 18

In-class Exercise (6)
 Consider a system with 4-byte pages. A process has the following

entries in its page table:

logical physical

0 4

1 5

2 30

 What is the physical address of the byte with logical address 9?
 The byte with logical address 9 is in page 9 / 4 = 2 (integer

division)
 Its offset on that page is 9 % 4 = 1
 Page 2 is in frame 30
 Therefore, the byte at logical address 9 is at physical address

30 x 4 + 1 = 121

Generalization
 If the page size is s
 If the logical address is x
 Then:

 the logical page number is p = floor(x / s)
 the offset is o = x mod s

 If page p is in frame f
 Then:

 logical address x translates to physical address y
= f * s + o

Sharing Memory Pages
 Time and again we’ve talked about processes

sharing memory
 Using shared memory IPC
 With dynamic linking

 It breaks the memory protection abstraction, but it’s
useful

 Now that we have paging, and that each process has
a page table, there is a very simple mechanism to
share memory!

 Just create page table entries that point to the same
physical frame in different page tables

 Let’s see it on a picture…

Sharing Memory Pages - EASY!

Text 1.1

Text 1.2

Text 1.3

Data 1.1

P1 @ space P1 page table

0 3

1 4

2 6

3 10

Text 2.1

Text 2.2

Text 2.3

Data 2.1

P2 @ space P2 page table

0 3

1 4

2 6

3 1

4 7

5 2
Data 2.2

Text 3.1

Text 3.2

Text 3.3

Data 3.1

P3 @ space P3 page table

0 0
1 5
2 6
3 8

4 2

Text 1.1

Text 1.2

Text 1.3

Data 2.1

Data 2.2

Data 3.1

Data 1.1
Heap 2.1

Heap 3.1

Heap 2.1

 P1 and P2 share all their text pages
(likely invocations of the same program)

 P3 shares one page of its text with P1
and P2 (likely a dynamically linked
library, e.g., the code of printf)

 P2 and P3 share one page of heap
(likely a shared memory segment)

Text 3.1

Text 3.2

Physical
Memory

Pages Not Allocated (yet)
 So far, we’ve shown page tables like this:

0
1
2
3

1
4
3
7

Page Frame

 But in fact, a page table contains entries for all possible pages (up to the
maximum allowed number of pages for a process, as defined by the OS

0
1
2
3
4
5
6
7

1
4
3
7

Not used (yet)
Not used (yet)
Not used (yet)
Not used (yet)

Page Frame

Not used (yet)
Not used (yet)
Not used (yet)
Not used (yet)

✓
✓
✓
✓
x
x
x
x

Valid Bit
 Each page entry is augmented by a valid bit
 Set to valid if the process is allowed to access the page (i.e., if the

page in the process address space)
 Set to invalid otherwise
 So page tables look like this:

0
1
2
3
4
5
6
7

1
4
3
7
xx
xx
xx
xx

Page Frame Valid

 If the process references a page whose entry’s valid bit is not set,
then a trap is generated (and the OS will likely terminate the
process)

What about Fragmentation?
 No external fragmentation!!

 This is of course the HUGE advantage of paging
 Only internal fragmentation

 Worst case: A process address space is n pages plus 1 byte
 In this case, we waste 1 page minus 1 byte

 Average case: Uniform distribution of address space sizes: 50%
 i.e., on average we waste 1/2 page per process

 Using smaller pages reduces internal fragmentation
 But large pages have advantages:

 Smaller page tables (and less frequent page table lookups)
 Loading one large page from disk takes less time than loading many

small ones
 Typical sizes: 4KiB, 8KiB, 16KiB
 Modern OSes: multiple page sizes supported (Linux: Huge pages;

Mac: Superpages; Windows: Large pages) through hardware

Frames Management
 The OS needs to keep track of the frames

 Which frames are used (and by which processes?)
 Which frames are free?

 The OS thus has a data structure: the free frame list
 Much simpler than a list of holes with different sizes

 As done for contiguous memory allocation in the previous “Main Memory” module
 When a process needs a frame, then the OS takes a frame from the free frame

list and allocates them to a process

13 14 15 18 20

Free frame list = {13, 14, 15, 18, 20}

Process creation: P1 needs 4 pages

Free frame list = {15}

P1.0 P1.1 15 P1.3 P1.2
0
1
2
3

13
14
20
18

Page Frame

P1’s page table

Aside: Memory-Mapped Files
 I/O is very expensive

 Each access to a file requires a disk seek and a disk access
 Out of question to read/write bytes one by one to a file

 On-disk address spaces are brought into RAM and virtualized
 Data files can be virtualized the same way, i.e., by mapping them to

memory
 Memory mapping

 Map disk block(s) to a memory frame(s)
 Initial access is expensive (and generates page faults)
 Subsequent access is made in memory (and cheap-er)
 The on-disk file may be updated at a convenient time, upon closing…
 Memory mapping is performed by dedicated system calls (mmap)
 Potential concurrency issues: multiple processes can map the same file

concurrently
 Let’s look at the man page for mmap

Conclusion
 Paging is great!

 No external fragmentation
 Easy to share pages among processes

 Mechanisms:
 Each process as a page table
 Each page table entry maps a logical page to a physical

frame
 Each page table entry has a valid bit
 Address translation is based on the page table
 The OS manages the list of free frames, and gives out frames

to processes
 In the next set of lecture notes, we look at some

challenges with paging and how we deal with them...

