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Conclusion (Previous Module)
 Assumption so far: Each process is in a contiguous address space  

 I’ll assume a single segment, for simplicity (“address space” = “segment” in these 
lecture notes)  

 😀  Address virtualization is simple 
 Just a base register and a limit register, a comparison, an addition 

 😳  No “best” memory allocation strategies  
 First Fit, Worst Fit, Best Fit, others??  

 😡  Fragmentation can be very large 
 RAM is wasted  

 🤬  There can be process starvation in spite of sufficient available RAM due 
to fragmentation  

 100 1MiB holes don’t allow a 100MiB process to run! 
 Conclusion: Our base assumption is flawed!  

 So.... address spaces shouldn’t be contiguous!?! 
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The Solution: “Paging”
 Our solution: break up address spaces into smaller chunks 
 Should we have chunks of variable size like we just did on the 

previous example? 
 Not a good idea as this is a well-known difficult problem 

algorithmically: Bin Packing 
 Known to be NP-hard 

 We really don’t want for the OS to have to solve some NP-
hard problem 

 But if chunk sizes are fixed, it all becomes easy! 
 No longer NP-hard 

 So that’s what we do! 
 Each process’ address spaces in split into same-size “pages” 
 This is called Paging



Paging
 The physical memory is split in fixed-

size frames, and each frame can hold 
a page (frame size = page size)  

 A page is “virtual” (or “logical”): Virtual 
Page Number (VPN)  

 A frame is physical: Physical Frame 
Number (PFN)  

 And just like that, we have non-
contiguous memory allocation  

 We still have internal fragmentation, 
but never external fragmentation! 
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Paging
 The physical memory is split in fixed-
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Paging
 The physical memory is split in fixed-

size frames, and each frame can hold 
a page (frame size = page size)  

 A page is “virtual” (or “logical”): Virtual 
Page Number (VPN)  

 A frame is physical: Physical Frame 
Number (PFN)  

 And just like that, we have non-
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 We still have internal fragmentation, 
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Paging and Addressing
 In the previous picture you see that a process’ address space 

is non-contiguous and pages are not even in the “right order” 
 When we used to say “some byte is at offset X from the 

beginning of the address space”, now we have to say “some 
byte is at offset Z from the beginning of the Y-th page of the 
address space” 

 So when we’re given a logical address, we have to compute: 
the  virtual page number and the offset within that page 

 For instance, if the page/frame size is 1000 bytes, and we’re 
talking about the 1200-th byte in the address space, then we 
say that the virtual page number is 1 and the offset is 200! 

 Now you see why we talked about parking lots in the Counting and 
Addressing module (spots are bytes, blocks of spots are pages)



Virtual Page number
 Virtual addresses issued by the CPU are split into two parts 

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0

p = 123 d = 1712

 The virtual/logical page number: p 
 The offset within the page: d 
 “Read the value at address x” becomes “read the value at 

offset d in page p”



Virtual Page number
 Virtual addresses issued by the CPU are split into two parts 
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 The virtual/logical page number: p 
 The offset within the page: d 
 “Read the value at address x” becomes “read the value at 

offset d in page p”

In the above example, how many 
pages can the process have? 



Virtual Page number
 Virtual addresses issued by the CPU are split into two parts 

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0

p = 123 d = 1712

 The virtual/logical page number: p 
 The offset within the page: d 
 “Read the value at address x” becomes “read the value at 

offset d in page p”

In the above example, how many 
pages can the process have? 
8 bits → 28 = 256 pages 



Virtual Page number
 Virtual addresses issued by the CPU are split into two parts 

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0

p = 123 d = 1712

 The virtual/logical page number: p 
 The offset within the page: d 
 “Read the value at address x” becomes “read the value at 

offset d in page p”

In the above example, how big is 
each page? 



Virtual Page number
 Virtual addresses issued by the CPU are split into two parts 

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0

p = 123 d = 1712

 The virtual/logical page number: p 
 The offset within the page: d 
 “Read the value at address x” becomes “read the value at 

offset d in page p”

In the above example, how big is 
each page? 
11 bits → 211 = 2KiB in a page 



Virtual Page number
 Virtual addresses issued by the CPU are split into two parts 

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0

p = 123 d = 1712

 The virtual/logical page number: p 
 The offset within the page: d 
 “Read the value at address x” becomes “read the value at 

offset d in page p”

 The process still has the illusion of a contiguous address space 
starting at page 0, continuing at page 1, etc.  

 But in reality (i.e., in the physical RAM), each page is in a 
memory frame anywhere: We say “page p is in frame f ” 



Virtual Page number
 Virtual addresses issued by the CPU are split into two parts 

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0

p = 123 d = 1712

 The virtual/logical page number: p 
 The offset within the page: d 
 “Read the value at address x” becomes “read the value at 

offset d in page p”

 The process still has the illusion of a contiguous address space 
starting at page 0, continuing at page 1, etc.  

 But in reality (i.e., in the physical RAM), each page is in a 
memory frame anywhere: We say “page p is in frame f ” 

 Obvious Question: how do we know in which frame a page is?? 



Page-to-Frame Translation
 The Virtual Page Number (VPN) has to be translated to 

the corresponding Physical Frame Number (PFN)  
 This is more sophisticated address translation scheme 

than what we saw in the previous module for contiguous 
memory allocation  

 Remember from the previous slide: instead of “read the 
value at address x”, a program program does “read the 
value at offset d in page p”  

 Therefore we need to keep track for each process of the 
mapping between each of its pages and the physical 
frame that page is in 

 To this end, each process has a page table... 
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fits in 4 pages 
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Page Size
 The page size is defined by the architecture  

 x86-64: 4 KiB, 2 MiB, and 1 GiB 
 ARM: 4 KiB, 64 KiB, and 1 MiB  

 The page size in bytes is always a power of 2  
 The pagesize command gives you the page size on UNIX-

like systems  
 For instance, on my laptop: 16KiB  

 You can easily reconfigure your OS to use a different page 
size 

 But that page size has to be supported by the hardware 
 We’ll understand why you may want smaller/bigger pages 

later... 



Page Size: Address Decomposition

 Say the size of the logical address space is 2m bytes 
 Say a page is 2n bytes (n < m), then...  

 The n low-order bits of a logical address are the offset into 
the page 

 offset ranges between 0 and 2n − 1, each one corresponding to a 
byte in the page 

 The remaining m − n high-order bits are the logical page 
number 

 We already saw this on an example! let’s see it on another 
example again…



Example
 Physical memory size = 25 = 32 bytes



Example
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Example
 Physical memory size = 25 = 32 bytes 
 How many bits in a physical address? 

 How many bits are necessary to 
address 25 thingies?
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Example
 Physical memory size = 25 = 32 bytes 
 5-bit physical addresses

0 - 00000 
1 - 00001  
2 - 00010 
3 - 00011 
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22 - 10110 
23 - 10111 
24 - 11000 
25 - 11001 
26 - 11010 
27 - 11011 
28 - 11100 
29 - 11101 
30 - 11110 
31 - 11111 



Example
 Physical memory size = 25 = 32 bytes 
 5-bit physical addresses 
 Say we pick frame size = 4 bytes 

 e.g., Frame #2 contains values at 
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Example
 Physical memory size = 25 = 32 bytes 
 5-bit physical addresses 
 Say we pick frame size = 4 bytes 

 e.g., Frame #2 contains values at 
physical addresses 8, 9, 10, 11 

 Therefore we also pick page size = 4 
bytes 

 How many 4-byte frames are there?
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Example
 Physical memory size = 25 = 32 bytes 
 5-bit physical addresses 
 frame / page size = 4 bytes 
 Say we have a process with a 16-byte 

address space 
 Therefore is has 16/4 = 4 pages 

 Say its bytes have values a, b, c, …
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Example
 Physical memory size = 25 = 32 bytes 
 5-bit physical addresses 
 frame / page size = 4 bytes 
 How many bits in a virtual address for 

that process?
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Example
 Physical memory size = 25 = 32 bytes 
 5-bit physical addresses 
 frame / page size = 4 bytes 
 How many bits in a virtual address for 

that process? 
 2-bit page index (22 pages) 
 2-bit offset (22 bytes in a page) 
 4-bit addresses
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Example
 What is the logical address of byte “g”? 
 Logical @ = (page #) * (page size) + 

offset 
 Page = 1, Offset = 2 (often written 1:2) 
 Logical @ = 1x4 + 2 = 6
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Example
 What is the physical address of byte “g”? 
 Physical @ = (frame #) * (page size) + 

offset 
 Page = 1 is in Frame 6 
 Same Offset = 2 
 Physical @ = 6x4 + 2 = 26
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In-class Exercise (1)

 A computer has 4 GiB of RAM with a page size 
of 8KiB. Processes have 1 GiB address spaces.  
 How many bits are used for physical addresses 
 How many bits are used for logical addresses 
 How many bits are used for logical page numbers?



In-class Exercise (1)
 A computer has 4 GiB of RAM with a page size of 8KiB. 

Processes have 1 GiB address spaces.  
 How many bits are used for physical addresses 

 Physical RAM: 4 GiB = 232 bytes 
      → 32-bit physical addresses 

 How many bits are used for logical addresses 
Logical address space: 1 GiB = 230 bytes 
      → 30-bit physical addresses 

 How many bits are used for logical page numbers? 
Page size = 213 bytes 
Number of pages in logical address space: 230/213 = 217 
      → 17-bit logical page numbers 
            (and 13-bit offsets) 



In-class Exercise (2)

 Logical addresses are 44-bit, and a process can 
have up to 227 pages. What is the page size? 



In-class Exercise (2)

 Logical addresses are 44-bit, and a process can 
have up to 227 pages. What is the page size? 

The address space can have up to 244 bytes 

There are up to 227 pages 
 
Therefore, a page is 244 / 227 = 217 bytes  



In-class Exercise (3)

 On my computer the page size is 16 KiB, and 
my process’ address space is 4GiB.  

 How many bits are used for the page number in 
a logical address?



In-class Exercise (3)
 On my computer the page size is 16 KiB, and my process’ 

address space is 4GiB.  
 How many bits are used for the page number in a logical 

address? 
The address space contains 232 bytes 
 
A page is 214 bytes 

Therefore, my address space has 232/214 = 218 pages 

Therefore, we need 18 bits for the page number in a logical 
address (and we have 14 bits in the offset)  



In-class Exercise (4)

 A computer has 32-bit physical addresses. The 
logical page number in a logical address is 14-
bit. A process can have up to a 2GiB address 
space 

 Let’s consider a process with currently a 1GiB 
address space (i.e., it could get up to another 
1GiB during execution).  

 What is the page size? 
 How many entries in the process’ page table 

currently point to pages that are part of the 
address space?



In-class Exercise (4)
 A computer has 32-bit physical addresses. The logical page number in a 

logical address is 14-bit. A process can have up to a 2GiB address space 
 Let’s consider a process with currently a 1GiB address space (i.e., it can get 

up to another 1GiB during execution).  
 What is the page size? 
Bytes in 2GiB (the max address space): 231 
Therefore: 31-bit logical addresses 
Therefore: 31 - 14 = 17-bit offsets 
Therefore: 217 bytes in a page 
Therefore: 128KiB pages 

 How many entries in the process’ page table currently point to pages that 
are part of the address space? 

The process has a 1GiB = 230-byte address space 
Number of pages in the address space: 230/217 = 213 
Therefore: there are 213 entries in the page table, each pointing to one page 



In-class Exercise (5)
 Logical addresses are 40-bit, and a process can 

use at most 1/4 of the physical RAM.  
 How big is the RAM?  
 A process has at most 222 pages on this 

system. How many bits are used for the “offset” 
part of logical addresses? 



In-class Exercise (5)
 Logical addresses are 40-bit, and a process can use at most 

1/4 of the physical RAM.  
 How big is the RAM? 

With 40-bit logical addresses, an address space is at most 240 
bytes  
So the RAM is 4 times as big: 242 bytes, which is 4TiB  

 A process has at most 222 pages on this system. How 
many bits are used for the “offset” part of logical 
addresses? 

Since we have 222 pages, 22 bits are used for the page 
number 
Therefore 40 - 22 = 18 bits are used for the offset  



In-class Exercise (6)
 Consider a system with 4-byte pages. A process 

has the following entries in its page table: 

logical physical
0 4
1 5
2 30

 What is the physical address of the byte with logical address 2?  
 What is the physical address of the byte with logical address 9? 



In-class Exercise (6)
 Consider a system with 4-byte pages. A process has the following entries in its 

page table: 
logical physical

0 4
1 5
2 30

 What is the physical address of the byte with logical address 2?  
 The byte with logical address 2 is the 3rd byte in page 0 (because that page contains 

the bytes at addresses 0, 1, 2, and 3) 
 Page 0, according to the page table is in physical frame 4 
 The first byte of physical frame 0 is at physical address 4 × 0 = 0 (the first byte in 

physical RAM)  
 The first byte of physical frame 1 is at physical address 4 × 1 = 4 (the fifth byte in 

physical RAM) 
 … 
 The first byte of physical frame 4 is at physical address 4 × 4 = 16 
 The 3rd byte of physical frame is thus at address 16 + 2 
 Therefore, the byte at logical address 2 is at physical address 18 



In-class Exercise (6)
 Consider a system with 4-byte pages. A process has the following 

entries in its page table: 

logical physical

0 4

1 5

2 30

 What is the physical address of the byte with logical address 9?  
 The byte with logical address 9 is in page 9 / 4 = 2 (integer 

division) 
 Its offset on that page is 9 % 4 = 1 
 Page 2 is in frame 30 
 Therefore, the byte at logical address 9 is at physical address 

30 x 4 + 1 = 121



Generalization
 If the page size is s 
 If the logical address is x 
 Then: 

 the logical page number is p = floor(x / s) 
 the offset is o = x mod s 

 If page p is in frame f 
 Then: 

 logical address x translates to physical address y 
= f * s + o 



Sharing Memory Pages
 Time and again we’ve talked about processes 

sharing memory 
 Using shared memory IPC 
 With dynamic linking 

 It breaks the memory protection abstraction, but it’s 
useful 

 Now that we have paging, and that each process has 
a page table, there is a very simple mechanism to 
share memory! 

 Just create page table entries that point to the same 
physical frame in different page tables  

 Let’s see it on a picture…



Sharing Memory Pages - EASY!

Text 1.1

Text 1.2

Text 1.3

Data 1.1

P1 @ space P1 page table

0 3

1 4

2 6

3 10

Text 2.1

Text 2.2

Text 2.3

Data 2.1

P2 @ space P2 page table

0 3

1 4

2 6

3 1

4 7

5 2
Data 2.2

Text 3.1

Text 3.2

Text 3.3

Data 3.1

P3 @ space P3 page table

0 0
1 5
2 6
3 8

4 2

Text 1.1

Text 1.2

Text 1.3

Data 2.1

Data 2.2

Data 3.1

Data 1.1
Heap 2.1

Heap 3.1

Heap 2.1

 P1 and P2 share all their text pages 
(likely invocations of the same program) 

 P3 shares one page of its text with P1 
and P2 (likely a dynamically linked 
library, e.g., the code of printf) 

 P2 and P3 share one page of heap 
(likely a shared memory segment)

Text 3.1

Text 3.2

Physical 
Memory



Pages Not Allocated (yet)
 So far, we’ve shown page tables like this:

0 
1 
2 
3

1 
4 
3 
7

Page Frame

 But in fact, a page table contains entries for all possible pages (up to the 
maximum allowed number of pages for a process, as defined by the OS

0 
1 
2 
3 
4 
5 
6 
7

1 
4 
3 
7 

Not used (yet) 
Not used (yet) 
Not used (yet) 
Not used (yet)

Page Frame

Not used (yet) 
Not used (yet) 
Not used (yet) 
Not used (yet)



✓ 
✓ 
✓ 
✓ 
x 
x 
x 
x

Valid Bit
 Each page entry is augmented by a valid bit 
 Set to valid if the process is allowed to access the page (i.e., if the 

page in the process address space) 
 Set to invalid otherwise 
 So page tables look like this: 

0 
1 
2 
3 
4 
5 
6 
7 

1 
4 
3 
7 
xx 
xx 
xx 
xx

Page Frame Valid

 If the process references a page whose entry’s valid bit is not set, 
then a trap is generated (and the OS will likely terminate the 
process)



What about Fragmentation?
 No external fragmentation!!  

 This is of course the HUGE advantage of paging  
 Only internal fragmentation  

 Worst case: A process address space is n pages plus 1 byte 
 In this case, we waste 1 page minus 1 byte  

 Average case: Uniform distribution of address space sizes: 50%  
 i.e., on average we waste 1/2 page per process  

 Using smaller pages reduces internal fragmentation 
 But large pages have advantages:  

 Smaller page tables (and less frequent page table lookups) 
 Loading one large page from disk takes less time than loading many 

small ones  
 Typical sizes: 4KiB, 8KiB, 16KiB 
 Modern OSes: multiple page sizes supported (Linux: Huge pages; 

Mac: Superpages; Windows: Large pages) through hardware 



Frames Management
 The OS needs to keep track of the frames  

 Which frames are used (and by which processes?) 
 Which frames are free?  

 The OS thus has a data structure: the free frame list 
 Much simpler than a list of holes with different sizes  

 As done for contiguous memory allocation in the previous “Main Memory” module  
 When a process needs a frame, then the OS takes a frame from the free frame 

list and allocates them to a process 

13 14 15 18 20

Free frame list = {13, 14, 15, 18, 20}

Process creation: P1 needs 4 pages

Free frame list = {15}

P1.0 P1.1 15 P1.3 P1.2
0 
1 
2 
3

13 
14 
20 
18

Page Frame

P1’s page table



Aside: Memory-Mapped Files
 I/O is very expensive  

 Each access to a file requires a disk seek and a disk access 
 Out of question to read/write bytes one by one to a file  

 On-disk address spaces are brought into RAM and virtualized  
 Data files can be virtualized the same way, i.e., by mapping them to 

memory 
 Memory mapping  

 Map disk block(s) to a memory frame(s) 
 Initial access is expensive (and generates page faults) 
 Subsequent access is made in memory (and cheap-er) 
 The on-disk file may be updated at a convenient time, upon closing… 
 Memory mapping is performed by dedicated system calls (mmap) 
 Potential concurrency issues: multiple processes can map the same file 

concurrently  
 Let’s look at the man page for mmap



Conclusion
 Paging is great!  

 No external fragmentation 
 Easy to share pages among processes  

 Mechanisms:  
 Each process as a page table 
 Each page table entry maps a logical page to a physical 

frame 
 Each page table entry has a valid bit 
 Address translation is based on the page table 
 The OS manages the list of free frames, and gives out frames 

to processes  
 In the next set of lecture notes, we look at some 

challenges with paging and how we deal with them... 


