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Disclaimer
 The content in these slides will be obvious to many of you 


 This is a good thing! 


 But when I teach this course, this material often causes 
problems


 Although it’s not technically OS material 

 And we need it to be solid for this second part of the 

semester

 And for the rest of your life!


 So I am presenting is here now, so that students who have 
difficulties with this have time to practice before it becomes 
critical for this course



Units of Storage
 The smallest unit of information is the bit 


 Anybody knows why it’s called a bit? 

 The basic unit of memory is a byte 


 1 Byte = 8 bits

 1 KiB = 210 Byte = 1,024 bytes

 1 MiB = 210 KiB = 220 bytes (1 Million) (mega)

 1 GiB = 210 MiB = 230 bytes (1 Billion) (giga)

 1 TiB = 210 GiB = 240 bytes (1 Trillion) (tera)

 1 PiB = 210 TiB = 250 bytes (1,000 Trillion) (peta)

 1 EiB = 210 PiB = 260 bytes (1 Million Trillion) (exa) 


 Often the “i” above is missing, which is not great 

 1GB = 109 bytes, but 1GiB = 230 bytes!


 You have to know the units and order above!!! 



Exponents, Logarithms
 We’ll use Exponents: 


 αx ·αy = αx+y

 α−x = 1 / αx

 αx / αy = αx−y 


 But we’ll do only powers of 2: 

 2x ·2y = 2x+y

 2−x = 1 / 2x 

 2x / 2y = 2x−y 


 We’ll use Logs: 

 logα αn = n


 But only for base 2: 

 log2 2n = n 

 Not to be confused with the natural logarithm, ln, which is really loge (ln ex = x), 

and which you’ve seen in Calculus

 In computer science: log2 is often just written as log, especially when we deal 

with asymptotic computational complexities (e.g., O(log2 n) = O(log10 n)) 

 I am going to assume the above is solid for everyone, but if it’s not, you 

know what you have to do…



Counting Bytes
 When studying operating systems, we often need to 

count “chunks” of bytes in some memory space

 Example #1: how many 1MiB chunks are there in a 

8MiB file? 

 easy: 8 


 Example #2: how many 4KiB chunks are there in a 
8GiB file? 

 not so easy perhaps? 


 The way to do this: use powers of 2

 We want results in powers of 2 anyway because numbers 

are typically too large to just write them out in decimal 
conveniently 



Examples
 How many groups of 12 parking spots are there in 252-spot 

parking lot? 

 answer: 252 / 12 = 21 


 How many groups of x thingies are there in a set of y thingies? 

 answer: y / x 


 How many 2KiB chunks are there in 1 GiB? 

 1 GiB = 230 bytes

 2 KiB = 2×210 = 211 bytes

 answer: 230 / 211 = 219 chunks 


 How many 8 KiB chunks are there in 128 MiB? 

 128 MiB = 27 ×220 = 227 bytes

 8 KiB = 23 ×210 = 213 bytes

 answer: 227 / 213 = 214 chunks 



Addressing
 We often partition thingies into chunks 


 Partition a pie into slices

 Partition a computer’s memory into bytes

 Partition a file into “blocks”

 Partition an address-space into “pages”

 Partition a disk into “sectors” 


 After partitioning we need to address the chunks

 Addressing means: “refer to something using a name/number” 


 We already know what addresses are: 

 Each byte in RAM is addressed by a number (called “the address”)

 An address is stored in binary form in the computer (like all numbers)

 We can then use these addresses, for instance in instructions (“store 

value 00110011 at address 1101001”) 



How Many Address Bits?
 Key question: what is the range of addresses that we need to address 

all chunks (uniquely)? 

 We also want the smallest range not to waste address bits by having 

large addresses that are not used 

 For saving on storage (we store addresses as data to do indirection) 


 Example: 

 We have 7 houses

 We want to “address” them via binary addresses

 We should use 3 address bits 

000, 001, 010, 011, 100, 101, 110 

 With 3 bits we can address 23 = 8 houses, so we’re “wasting” one slot

 With 2 bits we can address only 22 = 4 houses (00, 01, 10, 11), so that’s not 

enough

 We don’t want to use 4-bit addresses because when we need to store house 

addresses as data, then we’re wasting 1 bit of storage per house 

 i.e., all addresses would have the same leftmost bit 



How Many Address Bits?
 If you have 2n thingies, then you need n-bit addresses to 

address the thingies 

 fewer, and you can’t address them all

 more, and you’re wasting address bits 


 More generally, if you have n thingies, then you need 
⌈log2 n⌉-bit addresses


 Example with 7 houses: log2 7 ∼ 2.8074, therefore we should 
use ⌈log27⌉ = 3 bits 


 In this course we’ll almost always have a number of 
thingies that’s a power of 2 


 After all we “build” the system and choose what we use

 And as you can see above in red, powers of 2 are convenient 

when using binary addresses 



Some More Discrete Math
 Say you have a parking lot that consists of a long row of N 

parking spots, numbered 0 to N − 1 

 We structure this long row into blocks of n parking spots 

(assume n divides N) 

 Here are two simple discrete math “results”: 


1. The x-th spot in the parking lot (0≤x<N) is the (x mod b)-th 
spot in the (⌊x/b⌋)-th block  

2. The y-th spot in the z-th block is the (z×b+y)-th spot in the 
parking lot   

  Let’s see this on an example…



Parking Lot Example

 Say we have a parking lot with 3000 spots, 
and we structure them in blocks of 100 spots 


 What is the index of spot 2212 in its block? 

 2212 mod 100 = 12 


 In what block is spot 2212?

 2212 / 100 = 22 (integer division!)


 What is the global index of spot 5 in block 
20? 

 20×100+5 = 2005 

(because the first block is block 0) 



The End
 In an upcoming lecture we’ll just do a few simple in-

class exercises 


 You must be absolutely comfortable with all this since 
we’ll soon be doing counting/addressing all the time 


 Besides, being a computer scientist implies that you 
can count and address things, and that you’re not 
fazed by powers of 2!

 Sometimes a first interview question: what’s 2 to the 8? 😳


