
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Math Review:
Counting and
Addressing

Disclaimer
 The content in these slides will be obvious to many of you

 This is a good thing!

 But when I teach this course, this material often causes
problems

 Although it’s not technically OS material
 And we need it to be solid for this second part of the

semester
 And for the rest of your life!

 So I am presenting is here now, so that students who have
difficulties with this have time to practice before it becomes
critical for this course

Units of Storage
 The smallest unit of information is the bit

 Anybody knows why it’s called a bit?
 The basic unit of memory is a byte

 1 Byte = 8 bits
 1 KiB = 210 Byte = 1,024 bytes
 1 MiB = 210 KiB = 220 bytes (1 Million) (mega)
 1 GiB = 210 MiB = 230 bytes (1 Billion) (giga)
 1 TiB = 210 GiB = 240 bytes (1 Trillion) (tera)
 1 PiB = 210 TiB = 250 bytes (1,000 Trillion) (peta)
 1 EiB = 210 PiB = 260 bytes (1 Million Trillion) (exa)

 Often the “i” above is missing, which is not great
 1GB = 109 bytes, but 1GiB = 230 bytes!

 You have to know the units and order above!!!

Exponents, Logarithms
 We’ll use Exponents:

 αx ·αy = αx+y
 α−x = 1 / αx
 αx / αy = αx−y

 But we’ll do only powers of 2:
 2x ·2y = 2x+y
 2−x = 1 / 2x
 2x / 2y = 2x−y

 We’ll use Logs:
 logα αn = n

 But only for base 2:
 log2 2n = n
 Not to be confused with the natural logarithm, ln, which is really loge (ln ex = x),

and which you’ve seen in Calculus
 In computer science: log2 is often just written as log, especially when we deal

with asymptotic computational complexities (e.g., O(log2 n) = O(log10 n))
 I am going to assume the above is solid for everyone, but if it’s not, you

know what you have to do…

Counting Bytes
 When studying operating systems, we often need to

count “chunks” of bytes in some memory space
 Example #1: how many 1MiB chunks are there in a

8MiB file?
 easy: 8

 Example #2: how many 4KiB chunks are there in a
8GiB file?
 not so easy perhaps?

 The way to do this: use powers of 2
 We want results in powers of 2 anyway because numbers

are typically too large to just write them out in decimal
conveniently

Examples
 How many groups of 12 parking spots are there in 252-spot

parking lot?
 answer: 252 / 12 = 21

 How many groups of x thingies are there in a set of y thingies?
 answer: y / x

 How many 2KiB chunks are there in 1 GiB?
 1 GiB = 230 bytes
 2 KiB = 2×210 = 211 bytes
 answer: 230 / 211 = 219 chunks

 How many 8 KiB chunks are there in 128 MiB?
 128 MiB = 27 ×220 = 227 bytes
 8 KiB = 23 ×210 = 213 bytes
 answer: 227 / 213 = 214 chunks

Addressing
 We often partition thingies into chunks

 Partition a pie into slices
 Partition a computer’s memory into bytes
 Partition a file into “blocks”
 Partition an address-space into “pages”
 Partition a disk into “sectors”

 After partitioning we need to address the chunks
 Addressing means: “refer to something using a name/number”

 We already know what addresses are:
 Each byte in RAM is addressed by a number (called “the address”)
 An address is stored in binary form in the computer (like all numbers)
 We can then use these addresses, for instance in instructions (“store

value 00110011 at address 1101001”)

How Many Address Bits?
 Key question: what is the range of addresses that we need to address

all chunks (uniquely)?
 We also want the smallest range not to waste address bits by having

large addresses that are not used
 For saving on storage (we store addresses as data to do indirection)

 Example:
 We have 7 houses
 We want to “address” them via binary addresses
 We should use 3 address bits

000, 001, 010, 011, 100, 101, 110
 With 3 bits we can address 23 = 8 houses, so we’re “wasting” one slot
 With 2 bits we can address only 22 = 4 houses (00, 01, 10, 11), so that’s not

enough
 We don’t want to use 4-bit addresses because when we need to store house

addresses as data, then we’re wasting 1 bit of storage per house
 i.e., all addresses would have the same leftmost bit

How Many Address Bits?
 If you have 2n thingies, then you need n-bit addresses to

address the thingies
 fewer, and you can’t address them all
 more, and you’re wasting address bits

 More generally, if you have n thingies, then you need
⌈log2 n⌉-bit addresses

 Example with 7 houses: log2 7 ∼ 2.8074, therefore we should
use ⌈log27⌉ = 3 bits

 In this course we’ll almost always have a number of
thingies that’s a power of 2

 After all we “build” the system and choose what we use
 And as you can see above in red, powers of 2 are convenient

when using binary addresses

Some More Discrete Math
 Say you have a parking lot that consists of a long row of N

parking spots, numbered 0 to N − 1
 We structure this long row into blocks of n parking spots

(assume n divides N)
 Here are two simple discrete math “results”:

1. The x-th spot in the parking lot (0≤x<N) is the (x mod b)-th
spot in the (⌊x/b⌋)-th block

2. The y-th spot in the z-th block is the (z×b+y)-th spot in the
parking lot

 Let’s see this on an example…

Parking Lot Example

 Say we have a parking lot with 3000 spots,
and we structure them in blocks of 100 spots

 What is the index of spot 2212 in its block?
 2212 mod 100 = 12

 In what block is spot 2212?
 2212 / 100 = 22 (integer division!)

 What is the global index of spot 5 in block
20?
 20×100+5 = 2005

(because the first block is block 0)

The End
 In an upcoming lecture we’ll just do a few simple in-

class exercises

 You must be absolutely comfortable with all this since
we’ll soon be doing counting/addressing all the time

 Besides, being a computer scientist implies that you
can count and address things, and that you’re not
fazed by powers of 2!
 Sometimes a first interview question: what’s 2 to the 8? 😳

