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It’s a Data Structure
 A File System basically implements an (on-disk) 

data structure to store the directory structure, the 
files, and their content 
 Part of that on-disk data structure is sometimes brought 

into RAM temporarily 
 A File System implements simple operations on this 

data structures to manage files: 
 open, read, write, delete, move, etc. 

 The data structure and operation implementations 
should be efficient, should not waste too much 
space, and should be able to survive data 
corruptions



Files as Blocks
 The content of a file is stored as a set of blocks 

 Stored on HDD blocks or SDD pages 
 For each file we need an inode data structure to track where 

the file blocks are and store all kind of useful information 
about the file (e.g., permission, data of creation) 

 “inode” is UNIX/Linux terminology, which OSTEP uses throughout 
 Let’s call it “inode” here too, just like OSTEP, 

 We now have two “regions” on disk 
 The inode region (one block contains more than one inode) 
 The data region

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):
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Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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Non-Contiguous Allocations

 We already know from the MainMemory module that 
contiguous allocation is not a good idea 

 Fragmentation makes it difficult for find a large enough contiguous 
set of holes to store a new file 

 What if we want to append to the end of a file and there are no free 
block after its last block? 

 So we do non-contiguous allocation 
 A file’s blocks are not necessarily next to each other on the disk 

 The inode structure needs to keep track of where each block is 
 It can’t just be “index of first block and index of last block”!

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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Keep Track of Free Blocks?

 There are free blocks on the disk 
 Shown as empty squares in the figure above 

 The file system needs to keep track of where free blocks are 
 One option: an on-disk linked list of free blocks 

 Each block stores a few bytes that encode the index of the next free block 
 The file system just needs to index of the “first” free block 
 This could be optimized by keeping the number of consecutive free blocks 

 So that we have a linked list of groups of contiguous free blocks 
 The fact that a linked list is O(n) for traversal is ok since we really never 

need to traverse it 
 An other option: a bitmap 

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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Bitmap of Free Blocks 

 Main idea: we have an array of bits, one per block index on disk 
 0 means “free”, 1 means “not free” 

 This is called a bitmap 
 A bitmap doesn’t take much space 

 Say our disk is 2TiB with 4KiB blocks 
 That’s a total of 2^41 / 2^12 = 2^29 blocks 
 So the bitmap needs 2^29 bits 
 That’s 2^26 bytes, or 64MiB 
 This is only 0.003% of the total disk space “wasted” to store the  bitmap 

 A file system can keep two bitmaps 
 A bitmap of free inode blocks 
 A bitmap of free data blocks

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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Bitmap of Free Blocks 

 Main idea: we have an array of bits, one per block index on disk 
 0 means “free”, 1 means “not free” 

 This is called a bitmap 
 A bitmap doesn’t take much space 

 Say our disk is 2TiB with 4KiB blocks 
 That’s a total of 2^41 / 2^12 = 2^29 blocks 
 So the bitmap needs 2^29 bits 
 That’s 2^26 bytes, or 64MiB 
 This is only 0.003% of the total disk space “wasted” to store the  bitmap 

 A file system can keep two bitmaps 
 A bitmap of free inode blocks 
 A bitmap of free data blocks

i d

Shown in OSTEP like this, but 
each bitmap can span fewer or 
more than one disk block
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As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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and tracks things like which data blocks (in the data region) comprise a
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times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
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We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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 There needs to be information on disk about the file system as a 
whole 

 Which type of file system 
 The block size 
 The total number of blocks 
 Where the bitmaps are 
 Where the data region begins 
 Where the inodes region begins 

 OSTEP calls this the superblock, A UNIX terminology 
 In NTFS is called the Master File Table, in FAT it’s called the boot 

sector, etc. 
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inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
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points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
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128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a
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 There needs to be information on disk about the file system as a 
whole 

 Which type of file system 
 The block size 
 The total number of blocks 
 Where the bitmaps are 
 Where the data region begins 
 Where the inodes region begins 

 OSTEP calls this the superblock, A UNIX terminology 
 In NTFS is called the Master File Table, in FAT it’s called the boot 

sector, etc. 
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Recap So Far
 The File System on disk is, essentially: 

 A bunch of data blocks 
 For each file, blocks that contain a data structure that 

makes it possible to find information about the file and 
to locate all its data blocks 

 Blocks that contain data structures that make it 
possible to keep track of free blocks 

 Blocks that contain a master data structure that makes 
it possible to find all the other data structures 

 Next up: what data structure should we use to 
keep track of a file’s blocks? 
 The “inode”



The inode Data Structure
 The term “inode” comes from “index node” 
 This is the “low-level” name of a file 

 That we saw printed on the terminal with ls -i 
 As we said before, the inode contains all possible 

information about each file, or metadata 
 The key information an inode needs to encode is a 

way to find all of the file’s blocks 
 And all inodes should have the same size otherwise 

the file system implementation becomes much more 
complicated 

 Let’s look at a few options for the inode data 
structure…



An Array of Direct Pointers?
 Consider a file that consists of these 5 blocks
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An Array of Direct Pointers?
 Simple option: The inode stores an array of direct pointers 

 Basically, the list of all blocks that belong to the file
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An Array of Direct Pointers?
 Simple option: The inode stores an array of direct pointers 
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An Array of Direct Pointers?
 Simple option: The inode stores an array of direct pointers 

 Basically, the list of all blocks that belong to the file

 Problems: 
 If the inode has n pointers and you have a 1-block file, you’re wasting 

n-1 pointers: so n should be small 
 If the inode has n pointers and you want to store a file that has more 

than n blocks, you cannot: so n should be large 
 Picking a good n is not easy :)
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An On-Disk Linked List?
 One solution: just use an on-disk linked list 

 A few bytes in each block are used to store the index of the next block
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An On-Disk Linked List?
 One solution: just use an on-disk linked list 

 A few bytes in each block are used to store the index of the next block

 Problem: 
 Random access requires traversing the linked list, which 

is too slow (disk accesses are slooooow!) 
 If one block gets corrupted, then we lose all blocks after it
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A Hierarchical Index?
 Another solution: Same idea as hierarchical page tables 

 The inode points to an index, which points to indices, etc.
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A Hierarchical Index?
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A Hierarchical Index?
 Another solution: Same idea as hierarchical page tables 

 The inode points to an index, which points to indices, etc.

 Problem: 
 How do we pick the depth of the hierarchy? 
 Say we pick depth 10 because we want to accommodate large files 
 Then to access a 1-block file we need to access 10 blocks 

 We just made our disk 10x slower for small files!!! 
 And most files are small in practice, so we need to be fast for them! 

 Once again, we have a small file / big file problem….
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Multi-level Index
 Combine previous solutions into one: multi-level index
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Multi-level Index
 Combine previous solutions into one: multi-level index

 In the above example: 2 “direct” blocks and 3 “single-indirect” 
blocks 

 Many file system implementations use this idea
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These index blocks are 
allocated only if needed
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 Say a block index/pointer is 8 

bytes 
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 Say block size is 4KiB 
 Say a block index/pointer is 8 

bytes 
 What is the maximum file size?

12 x 4KiB +  
(212/23) x 4KiB +  
(212/23)2 x 4KiB +      ~= 513GiB   
(212/23)3 x 4KiB



And now, for something 
completely different… FAT
 What we’ve described so far is a pretty standard UNIX approach 
 An old, but still used today, filesystem on Windows is FAT (File 

Allocation Table) 
 NTFS is more recent, and uses a different kind of table 

 The simple idea of FAT is that there is a table stored on disk, that is 
loaded (at least partially) in RAM upon boot 

 Since it’s in RAM, accessing the table is fast! 
 The table keeps track of clusters of contiguous file blocks, in a linked list 

manner 
 Each entry in the table is for a cluster, and that table entry is the index of 

the next cluster 
 A “cluster” is simply some fixed number of disk blocks 

 Finding free space is simple: free clusters are organized in a linked list, 
and one just need to find the first entry in the table that contains a zero 

 Let’s see this on a picture…



The FAT table

712

34

0xFFFFFF8
foo.txt 245…

245

712

34

 A file entry in the file system 
just contains one FAT table 
index 

 This is the index of a cluster 
 The entry in the table for that 

cluster contains the index of 
the next cluster 

 The last entry contains some 
reserved code that means 
“last cluster”



The FAT table

0

0

0

 Free clusters simply have 
an entry set to 0 in the 
table 

 Finding free space means 
finding the first entry in the 
table that has value 0 

 This is a O(n) search, but 
in memory 

 Not super efficient 
 Not great for fragmentation 
 NTFS remedies this 

 Using a bitmap!
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Directories
 A directory is described in an inode, just like a normal file 
 But its content is a list of key-value pairs: 

 A user-level name (and perhaps a length) 
 An inode reference 

 Each directory has two additional entries: “.” and “..” 
 For instance, a directory content on disk could be (encoded in 

binary):

bar

tmpf1.tx some_long_name

inode#  rclen   strlen  Name 
24      20      1       . 
72      20      2       .. 
0       40      ??      ????? 
23      20      6       f1.txt 
189     20      3       tmp 
121     40      14      some_long_name



inode#  rclen   strlen  Name 
24      20      1       . 
72      20      2       .. 
0       40      ??      ????? 
23      20      6       f1.txt 
189     20      3       tmp 
121     40      14      some_long_name

Directories
 A directory is described in an inode, just like a normal file 
 But its content is a list of key-value pairs: 

 A user-level name (and perhaps a length) 
 An inode reference 

 Each directory has two additional entries: “.” and “..” 
 For instance, a directory content on disk could be (encoded in 

binary):

bar

tmpf1.tx some_long_name

Length of this record, 
which is a multiple of 
some integer (here: 
20). This means that 
each record has some 
unused bytes. But it 
simplifies the 
implementation if 
records are all multiples 
of the same integer



Directories
 A directory is described in an inode, just like a normal file 
 But its content is a list of key-value pairs: 

 A user-level name (and perhaps a length) 
 An inode reference 

 Each directory has two additional entries: “.” and “..” 
 For instance, a directory content on disk could be (encoded in 

binary):

bar

tmpf1.tx some_long_name

inode#  rclen   strlen  Name 
24      20      1       . 
72      20      2       .. 
0       40      ??      ????? 
23      20      6       f1.txt 
189     20      3       tmp 
121     40      14      some_long_name

An inode number 0 
means: this slot isn’t 
used. This happens 
after a file is deleted.  
This empty record can 
then be reused later 
when a new file is 
created in the directory



Isn’t a Linear List O(n)??
 You have likely noted that in the previous slides we say that 

the directory contains a list of entries for its content 
 This means we we have to do a linear search for a name in 

that list, which is O(n) 
 If a directory has a lot of entries, then this can take a long time 
 There are file systems that use better data structures for 

logarithmic-time searching (e.g., a B-tree) 
 Everything you learn in 311 comes into play here 

 But the measure of complexity should be the number of disk blocks 
read/written, not some number of compute operations 

 There are many, many, many file systems out there that have 
used or currently use all kinds of data structures 

 But for now, let’s stick to our simple list…



Opening a Path
 Now that we understand how directories are stored, it’s easy to see how to 

navigate the directory hierarchy to find a file 
 Say the user does: open(“/home/henric/ics332/file_system.pdf”) 

 In the superblock find the address of the inode for “/“ and load this inode into 
RAM 

 Load the data blocks pointed to by this inode until an entry for “home” is found, 
and then load that inode into RAM 

 Load the data blocks pointed to by this inode until an entry for “henric” is found, 
and then load that inode into RAM 

 Load the data blocks pointed to by this inode until an entry for “ics332” is found, 
and then load that inode into RAM 

 Load the data blocks pointed to by this inode until an entry for 
“file_system.pdf” is found, and then load that inode into RAM 

 FINALLY: access the data blocks points to by that inode, which is the file content 
we wanted 

 Assuming that each directory content fits in a single block, this is 10 block loads 
before we can load the first data block of the file!! 

 This is a lot of I/O!!!



Opening a Path
 The previous slide is the reason why we have and open() 

system call, instead of something like: 
 read(“/home/henric/ics332/
file_system_implementation.pdf”, 12) 

 write(“/home/henric/ics332/
file_system_implementation.pdf”, data, 48) 

 lseek(“/home/henric/ics332/
file_system_implementation.pdf”, 56) 

 … 

 Furthermore, all (good) file systems cache path translations 
 i.e., the address/index of the inode for file 

“file_system_implementation.pdf” is remember after it’s 
closed, just in case it’s opened again later 

 A “software cache” managed using LRU 
 Like a TLB,  but in software



Data Block Caching
 Most file systems implement some form of caching 

 Remember that disk controllers also implement their own caching 
 When you read a (clean) block that you’ve read recently, 

likely you will get it from an in-memory cache rather than from 
the Disk 

 When you write a block, likely it won’t go to disk but stay in 
an in-memory cache 

 It could be written later whenever the disk is idle 
 Or it could never be written at all if the program re-writes it 

 Imagine a program that every 1ms writes one different byte in the block 
 This program should only write the block back to disk once its done! 

 And if the system crashes, you’ve lost data! 
 Caching is the one idea that occurs EVERYWHERE in this 

course



Consistency Checking
 The File System shouldn’t lose data or become inconsistent  
 It’s a fragile affair, with data structure pointers all over the place, 

and data/metadata cached in memory  
 An abrupt shutdown can leave an inconsistent state 

 The system was in the middle of updating some pointers 
 Part of the cached data/metadata was never written back to disk  

 One approach: perform consistency checking 
 Consistency can be checked by scanning all the metadata 

 Takes a long time, occurs upon reboot if necessary 
 A “is it necessary to do the check?” bit is kept up-to-date by the system  
 Unix: fsck, Windows: chkdsk  

 Overall philosophy: we allow the system to be corrupted, and we 
later attempt repair



Journaling
 Issue with consistency checking: 

 Some data structure that is damaged may not be repairable 
 Human intervention is needed 
 Checking a large file system takes a very long time  

 Another option: Log-based transaction-oriented FS (Journaling) 
 Whenever the file system metadata is about to be modified, the 

sequence of actions, or transaction, to perform is written to a circular log 
and all actions are marked as “pending”  

 Then the system proceeds with the actions asynchronously, marking 
them as completed along the way  

 Once all actions in a transaction are completed, the transaction is 
“committed” 

 If the system crashes, we know all the pending actions in all non- 
committed transactions, so we can perform an undo  

 Writing to the log is overhead, but it’s sequential writing to the log file, 
and (on HDD) sequential writing is fast 



Conclusion
 File Systems are considered part of the OS, but 

implementations are developed outside of the OS 
 It’s an OS thing, but it’s not part of the Kernel code 

 File Systems are a huge topic and we only 
scratched the surface here 
 If you’re into it: OSTEP Chapters 42, 43, 45, 48, 49, 50 
 There is a lot of research and development in this area 

(especially for Distributed File Systems) 
 What we covered in this modules gives you the 

basics from which you can, if needed/desired, 
work towards becoming a file system expert


