
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

File System
Implementation

It’s a Data Structure
 A File System basically implements an (on-disk)

data structure to store the directory structure, the
files, and their content
 Part of that on-disk data structure is sometimes brought

into RAM temporarily
 A File System implements simple operations on this

data structures to manage files:
 open, read, write, delete, move, etc.

 The data structure and operation implementations
should be efficient, should not waste too much
space, and should be able to survive data
corruptions

Files as Blocks
 The content of a file is stored as a set of blocks

 Stored on HDD blocks or SDD pages
 For each file we need an inode data structure to track where

the file blocks are and store all kind of useful information
about the file (e.g., permission, data of creation)

 “inode” is UNIX/Linux terminology, which OSTEP uses throughout
 Let’s call it “inode” here too, just like OSTEP,

 We now have two “regions” on disk
 The inode region (one block contains more than one inode)
 The data region

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:

0 7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES

Non-Contiguous Allocations

 We already know from the MainMemory module that
contiguous allocation is not a good idea

 Fragmentation makes it difficult for find a large enough contiguous
set of holes to store a new file

 What if we want to append to the end of a file and there are no free
block after its last block?

 So we do non-contiguous allocation
 A file’s blocks are not necessarily next to each other on the disk

 The inode structure needs to keep track of where each block is
 It can’t just be “index of first block and index of last block”!

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:

0 7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES

Keep Track of Free Blocks?

 There are free blocks on the disk
 Shown as empty squares in the figure above

 The file system needs to keep track of where free blocks are
 One option: an on-disk linked list of free blocks

 Each block stores a few bytes that encode the index of the next free block
 The file system just needs to index of the “first” free block
 This could be optimized by keeping the number of consecutive free blocks

 So that we have a linked list of groups of contiguous free blocks
 The fact that a linked list is O(n) for traversal is ok since we really never

need to traverse it
 An other option: a bitmap

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:

0 7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:

0 7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES

Bitmap of Free Blocks

 Main idea: we have an array of bits, one per block index on disk
 0 means “free”, 1 means “not free”

 This is called a bitmap
 A bitmap doesn’t take much space

 Say our disk is 2TiB with 4KiB blocks
 That’s a total of 2^41 / 2^12 = 2^29 blocks
 So the bitmap needs 2^29 bits
 That’s 2^26 bytes, or 64MiB
 This is only 0.003% of the total disk space “wasted” to store the bitmap

 A file system can keep two bitmaps
 A bitmap of free inode blocks
 A bitmap of free data blocks

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:

0 7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:

0 7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:

0 7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:

0 7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES

Bitmap of Free Blocks

 Main idea: we have an array of bits, one per block index on disk
 0 means “free”, 1 means “not free”

 This is called a bitmap
 A bitmap doesn’t take much space

 Say our disk is 2TiB with 4KiB blocks
 That’s a total of 2^41 / 2^12 = 2^29 blocks
 So the bitmap needs 2^29 bits
 That’s 2^26 bytes, or 64MiB
 This is only 0.003% of the total disk space “wasted” to store the bitmap

 A file system can keep two bitmaps
 A bitmap of free inode blocks
 A bitmap of free data blocks

i d

Shown in OSTEP like this, but
each bitmap can span fewer or
more than one disk block

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:

0 7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:

0 7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES

Superblock

 There needs to be information on disk about the file system as a
whole

 Which type of file system
 The block size
 The total number of blocks
 Where the bitmaps are
 Where the data region begins
 Where the inodes region begins

 OSTEP calls this the superblock, A UNIX terminology
 In NTFS is called the Master File Table, in FAT it’s called the boot

sector, etc.

i d

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:

0 7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES

FILE SYSTEM IMPLEMENTATION 3

again for simplicity, reserve a fixed portion of the disk for these blocks,
say the last 56 of 64 blocks on the disk:

0 7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

As we learned about (a little) last chapter, the file system has to track
information about each file. This information is a key piece of metadata,
and tracks things like which data blocks (in the data region) comprise a
file, the size of the file, its owner and access rights, access and modify
times, and other similar kinds of information. To store this information,
file systems usually have a structure called an inode (we’ll read more
about inodes below).

To accommodate inodes, we’ll need to reserve some space on the disk
for them as well. Let’s call this portion of the disk the inode table, which
simply holds an array of on-disk inodes. Thus, our on-disk image now
looks like this picture, assuming that we use 5 of our 64 blocks for inodes
(denoted by I’s in the diagram):

0
I I I I I

7
D
8

D D D D D D D
15

D
16

D D D D D D D
23

D
24

D D D D D D D
31

D
32

D D D D D D D
39

D
40

D D D D D D D
47

D
48

D D D D D D D
55

D
56

D D D D D D D
63

Data Region

Data Region

Inodes

We should note here that inodes are typically not that big, for example
128 or 256 bytes. Assuming 256 bytes per inode, a 4-KB block can hold 16
inodes, and our file system above contains 80 total inodes. In our simple
file system, built on a tiny 64-block partition, this number represents the
maximum number of files we can have in our file system; however, do
note that the same file system, built on a larger disk, could simply allocate
a larger inode table and thus accommodate more files.

Our file system thus far has data blocks (D), and inodes (I), but a few
things are still missing. One primary component that is still needed, as
you might have guessed, is some way to track whether inodes or data
blocks are free or allocated. Such allocation structures are thus a requisite
element in any file system.

Many allocation-tracking methods are possible, of course. For exam-
ple, we could use a free list that points to the first free block, which then
points to the next free block, and so forth. We instead choose a simple and
popular structure known as a bitmap, one for the data region (the data
bitmap), and one for the inode table (the inode bitmap). A bitmap is a

c© 2008–20, ARPACI-DUSSEAU
THREE

EASY

PIECES

S

Superblock

 There needs to be information on disk about the file system as a
whole

 Which type of file system
 The block size
 The total number of blocks
 Where the bitmaps are
 Where the data region begins
 Where the inodes region begins

 OSTEP calls this the superblock, A UNIX terminology
 In NTFS is called the Master File Table, in FAT it’s called the boot

sector, etc.

i d

Superblock

Recap So Far
 The File System on disk is, essentially:

 A bunch of data blocks
 For each file, blocks that contain a data structure that

makes it possible to find information about the file and
to locate all its data blocks

 Blocks that contain data structures that make it
possible to keep track of free blocks

 Blocks that contain a master data structure that makes
it possible to find all the other data structures

 Next up: what data structure should we use to
keep track of a file’s blocks?
 The “inode”

The inode Data Structure
 The term “inode” comes from “index node”
 This is the “low-level” name of a file

 That we saw printed on the terminal with ls -i
 As we said before, the inode contains all possible

information about each file, or metadata
 The key information an inode needs to encode is a

way to find all of the file’s blocks
 And all inodes should have the same size otherwise

the file system implementation becomes much more
complicated

 Let’s look at a few options for the inode data
structure…

An Array of Direct Pointers?
 Consider a file that consists of these 5 blocks

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

An Array of Direct Pointers?
 Simple option: The inode stores an array of direct pointers

 Basically, the list of all blocks that belong to the file

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

An Array of Direct Pointers?
 Simple option: The inode stores an array of direct pointers

 Basically, the list of all blocks that belong to the file

inode

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

metadata
3

17
10
22
23

An Array of Direct Pointers?
 Simple option: The inode stores an array of direct pointers

 Basically, the list of all blocks that belong to the file

 Problems:
 If the inode has n pointers and you have a 1-block file, you’re wasting

n-1 pointers: so n should be small
 If the inode has n pointers and you want to store a file that has more

than n blocks, you cannot: so n should be large
 Picking a good n is not easy :)

inode

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

metadata
3

17
10
22
23

An On-Disk Linked List?
 One solution: just use an on-disk linked list

 A few bytes in each block are used to store the index of the next block

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

An On-Disk Linked List?
 One solution: just use an on-disk linked list

 A few bytes in each block are used to store the index of the next block

inode

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

metadata
3

An On-Disk Linked List?
 One solution: just use an on-disk linked list

 A few bytes in each block are used to store the index of the next block

 Problem:
 Random access requires traversing the linked list, which

is too slow (disk accesses are slooooow!)
 If one block gets corrupted, then we lose all blocks after it

inode

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

metadata
3

A Hierarchical Index?
 Another solution: Same idea as hierarchical page tables

 The inode points to an index, which points to indices, etc.

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

A Hierarchical Index?
 Another solution: Same idea as hierarchical page tables

 The inode points to an index, which points to indices, etc.

inode

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

metadata
1

A Hierarchical Index?
 Another solution: Same idea as hierarchical page tables

 The inode points to an index, which points to indices, etc.

inode

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

metadata
1

A Hierarchical Index?
 Another solution: Same idea as hierarchical page tables

 The inode points to an index, which points to indices, etc.

inode

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

metadata
1

A Hierarchical Index?
 Another solution: Same idea as hierarchical page tables

 The inode points to an index, which points to indices, etc.

 Problem:
 How do we pick the depth of the hierarchy?
 Say we pick depth 10 because we want to accommodate large files
 Then to access a 1-block file we need to access 10 blocks

 We just made our disk 10x slower for small files!!!
 And most files are small in practice, so we need to be fast for them!

 Once again, we have a small file / big file problem….

inode

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

metadata
1

Multi-level Index
 Combine previous solutions into one: multi-level index

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

Multi-level Index
 Combine previous solutions into one: multi-level index

inode

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

metadata
3

17

Multi-level Index
 Combine previous solutions into one: multi-level index

inode

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

metadata
3

17

Multi-level Index
 Combine previous solutions into one: multi-level index

inode

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

metadata
3

1

17

Multi-level Index
 Combine previous solutions into one: multi-level index

inode

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

metadata
3

1

17

Multi-level Index
 Combine previous solutions into one: multi-level index

 In the above example: 2 “direct” blocks and 3 “single-indirect”
blocks

 Many file system implementations use this idea

inode

0 1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

9

18 19

28 29

metadata
3

1

The UNIX inode

metadata

12 direct pointers

.

.

.

. . .
. . .

The UNIX inode

metadata

12 direct pointers

Single indirect

.

.

.

. . .
. . .

. . .

Double indirect

The UNIX inode

metadata

12 direct pointers

Single indirect

.

.

.

. . .
. . .

. . .

. . .

. . .

. . .

Double indirect

Triple indirect

The UNIX inode

metadata

12 direct pointers

Single indirect

.

.

.

. . .
. . .

. . .

. . .

. . .

. . .

. . .

Double indirect

Triple indirect

The UNIX inode

metadata

12 direct pointers

Single indirect

.

.

.

. . .
. . .

. . .

. . .

. . .

. . .

. . .

These blocks are
accessed very fast

These index blocks are
allocated only if needed

Double indirect

Triple indirect

The UNIX inode

metadata

12 direct pointers

Single indirect

.

.

.

. . .
. . .

. . .

. . .

. . .

. . .

. . .

These blocks are
accessed very fast

These index blocks are
allocated only if needed

These blocks are
accessed 2x slower

These blocks are
accessed 3x
slower

These blocks are
accessed 4x slower

Double indirect

Triple indirect

The UNIX inode

metadata

12 direct pointers

Single indirect

.

.

.

. . .
. . .

. . .

. . .

. . .

. . .

. . .

 Say block size is 4KiB
 Say a block index/pointer is 8

bytes
 What is the maximum file size?

Double indirect

Triple indirect

The UNIX inode

metadata

12 direct pointers

Single indirect

.

.

.

. . .
. . .

. . .

. . .

. . .

. . .

. . .

 Say block size is 4KiB
 Say a block index/pointer is 8

bytes
 What is the maximum file size?

12 x 4KiB +
(212/23) x 4KiB +
(212/23)2 x 4KiB + ~= 513GiB
(212/23)3 x 4KiB

And now, for something
completely different… FAT
 What we’ve described so far is a pretty standard UNIX approach
 An old, but still used today, filesystem on Windows is FAT (File

Allocation Table)
 NTFS is more recent, and uses a different kind of table

 The simple idea of FAT is that there is a table stored on disk, that is
loaded (at least partially) in RAM upon boot

 Since it’s in RAM, accessing the table is fast!
 The table keeps track of clusters of contiguous file blocks, in a linked list

manner
 Each entry in the table is for a cluster, and that table entry is the index of

the next cluster
 A “cluster” is simply some fixed number of disk blocks

 Finding free space is simple: free clusters are organized in a linked list,
and one just need to find the first entry in the table that contains a zero

 Let’s see this on a picture…

The FAT table

712

34

0xFFFFFF8
foo.txt 245…

245

712

34

 A file entry in the file system
just contains one FAT table
index

 This is the index of a cluster
 The entry in the table for that

cluster contains the index of
the next cluster

 The last entry contains some
reserved code that means
“last cluster”

The FAT table

0

0

0

 Free clusters simply have
an entry set to 0 in the
table

 Finding free space means
finding the first entry in the
table that has value 0

 This is a O(n) search, but
in memory

 Not super efficient
 Not great for fragmentation
 NTFS remedies this

 Using a bitmap!

100

407

928

Directories
 A directory is described in an inode, just like a normal file
 But its content is a list of key-value pairs:

 A user-level name (and perhaps a length)
 An inode reference

 Each directory has two additional entries: “.” and “..”
 For instance, a directory content on disk could be (encoded in

binary):

bar

tmpf1.tx some_long_name

inode# rclen strlen Name
24 20 1 .
72 20 2 ..
0 40 ?? ?????
23 20 6 f1.txt
189 20 3 tmp
121 40 14 some_long_name

inode# rclen strlen Name
24 20 1 .
72 20 2 ..
0 40 ?? ?????
23 20 6 f1.txt
189 20 3 tmp
121 40 14 some_long_name

Directories
 A directory is described in an inode, just like a normal file
 But its content is a list of key-value pairs:

 A user-level name (and perhaps a length)
 An inode reference

 Each directory has two additional entries: “.” and “..”
 For instance, a directory content on disk could be (encoded in

binary):

bar

tmpf1.tx some_long_name

Length of this record,
which is a multiple of
some integer (here:
20). This means that
each record has some
unused bytes. But it
simplifies the
implementation if
records are all multiples
of the same integer

Directories
 A directory is described in an inode, just like a normal file
 But its content is a list of key-value pairs:

 A user-level name (and perhaps a length)
 An inode reference

 Each directory has two additional entries: “.” and “..”
 For instance, a directory content on disk could be (encoded in

binary):

bar

tmpf1.tx some_long_name

inode# rclen strlen Name
24 20 1 .
72 20 2 ..
0 40 ?? ?????
23 20 6 f1.txt
189 20 3 tmp
121 40 14 some_long_name

An inode number 0
means: this slot isn’t
used. This happens
after a file is deleted.
This empty record can
then be reused later
when a new file is
created in the directory

Isn’t a Linear List O(n)??
 You have likely noted that in the previous slides we say that

the directory contains a list of entries for its content
 This means we we have to do a linear search for a name in

that list, which is O(n)
 If a directory has a lot of entries, then this can take a long time
 There are file systems that use better data structures for

logarithmic-time searching (e.g., a B-tree)
 Everything you learn in 311 comes into play here

 But the measure of complexity should be the number of disk blocks
read/written, not some number of compute operations

 There are many, many, many file systems out there that have
used or currently use all kinds of data structures

 But for now, let’s stick to our simple list…

Opening a Path
 Now that we understand how directories are stored, it’s easy to see how to

navigate the directory hierarchy to find a file
 Say the user does: open(“/home/henric/ics332/file_system.pdf”)

 In the superblock find the address of the inode for “/“ and load this inode into
RAM

 Load the data blocks pointed to by this inode until an entry for “home” is found,
and then load that inode into RAM

 Load the data blocks pointed to by this inode until an entry for “henric” is found,
and then load that inode into RAM

 Load the data blocks pointed to by this inode until an entry for “ics332” is found,
and then load that inode into RAM

 Load the data blocks pointed to by this inode until an entry for
“file_system.pdf” is found, and then load that inode into RAM

 FINALLY: access the data blocks points to by that inode, which is the file content
we wanted

 Assuming that each directory content fits in a single block, this is 10 block loads
before we can load the first data block of the file!!

 This is a lot of I/O!!!

Opening a Path
 The previous slide is the reason why we have and open()

system call, instead of something like:
 read(“/home/henric/ics332/
file_system_implementation.pdf”, 12)

 write(“/home/henric/ics332/
file_system_implementation.pdf”, data, 48)

 lseek(“/home/henric/ics332/
file_system_implementation.pdf”, 56)

 …

 Furthermore, all (good) file systems cache path translations
 i.e., the address/index of the inode for file

“file_system_implementation.pdf” is remember after it’s
closed, just in case it’s opened again later

 A “software cache” managed using LRU
 Like a TLB, but in software

Data Block Caching
 Most file systems implement some form of caching

 Remember that disk controllers also implement their own caching
 When you read a (clean) block that you’ve read recently,

likely you will get it from an in-memory cache rather than from
the Disk

 When you write a block, likely it won’t go to disk but stay in
an in-memory cache

 It could be written later whenever the disk is idle
 Or it could never be written at all if the program re-writes it

 Imagine a program that every 1ms writes one different byte in the block
 This program should only write the block back to disk once its done!

 And if the system crashes, you’ve lost data!
 Caching is the one idea that occurs EVERYWHERE in this

course

Consistency Checking
 The File System shouldn’t lose data or become inconsistent
 It’s a fragile affair, with data structure pointers all over the place,

and data/metadata cached in memory
 An abrupt shutdown can leave an inconsistent state

 The system was in the middle of updating some pointers
 Part of the cached data/metadata was never written back to disk

 One approach: perform consistency checking
 Consistency can be checked by scanning all the metadata

 Takes a long time, occurs upon reboot if necessary
 A “is it necessary to do the check?” bit is kept up-to-date by the system
 Unix: fsck, Windows: chkdsk

 Overall philosophy: we allow the system to be corrupted, and we
later attempt repair

Journaling
 Issue with consistency checking:

 Some data structure that is damaged may not be repairable
 Human intervention is needed
 Checking a large file system takes a very long time

 Another option: Log-based transaction-oriented FS (Journaling)
 Whenever the file system metadata is about to be modified, the

sequence of actions, or transaction, to perform is written to a circular log
and all actions are marked as “pending”

 Then the system proceeds with the actions asynchronously, marking
them as completed along the way

 Once all actions in a transaction are completed, the transaction is
“committed”

 If the system crashes, we know all the pending actions in all non-
committed transactions, so we can perform an undo

 Writing to the log is overhead, but it’s sequential writing to the log file,
and (on HDD) sequential writing is fast

Conclusion
 File Systems are considered part of the OS, but

implementations are developed outside of the OS
 It’s an OS thing, but it’s not part of the Kernel code

 File Systems are a huge topic and we only
scratched the surface here
 If you’re into it: OSTEP Chapters 42, 43, 45, 48, 49, 50
 There is a lot of research and development in this area

(especially for Distributed File Systems)
 What we covered in this modules gives you the

basics from which you can, if needed/desired,
work towards becoming a file system expert

