
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Main Memory

Main Memory: Basics
! Main Memory = Memory Unit (in Von Neumann model)

" (Large) contiguous array of bytes/words, each with its own address
" Stream of addresses coming in on the memory bus
" Each incoming address is stored in the memory-address register of the

memory unit
" Which causes the memory unit to put the content at that address on the

memory bus
" And that content is then read in by the CPU

! Called the “Main” memory by contrast with registers, caches, which are
all managed 100% by the hardware

! Processes share the main memory, therefore the OS must manage the
main memory

! The CPU only works with registers, but it can issue addresses of
locations (bytes) in main memory

" Via load/store instructions (in MIPS assembly: LOAD and STORE; in x86
assembly: mov .., [..] and mov [..], ..)

Contiguous Memory Allocation
! Let us assume what we have always assumed so far: each

process is allocated a contiguous zone of physical memory

Kernel / Operating System

Process
Address
Space

Text

Data

Heap

Stack

Avail. Memory

0x0000

0x013F

0xCFFF

In this example
memory is fully utilized
by the kernel and one
process:

Total RAM size
= 0xCFFF + 1
= 53248d
= 52 KiB

Contiguous Memory Allocation + Multiprogramming

Kernel / Operating System

Process 1

Text

Data

Heap

Stack

Avail. Memory

Process 2
Text

Avail. Memory

Process 2
Text

Data

Heap

Stack

Avail. Memory

Available Memory

This is the typical
picture shown with
multiple processes in
memory, each with its
own contiguous
address space, and
perhaps some left over
available memory

Available Memory

Address Binding
! One important question is that of address binding: when are physical

addresses determined for bytes of data/instruction?
! In your high-level code you write something like:

C source code
int a; // global
. . .
if (a != 0) {
 a++;
}
. . .

! When is the address of where the value of a is located determined??
! When is the address of the instruction to which to jump in case the

value of a is zero determined??
! Let’s look at the compiled version of this program…

Address Binding
! One important question is that of address binding: when are physical

addresses determined for bytes of data/instruction?
! In your high-level code you write something like:

C source code
int a; // global
. . .
if (a != 0) {
 a++;
}
. . .

! When is the address of where the value of a is located determined??
! When is the address of the instruction to which to jump in case the

value of a is zero determined??
! The assembler transforms the assembly code into a binary executable
! Let’s look at the compiled version of this program…

Compiled Assembly Code
 . . .
 cmp [label_a], 0
 jz Nope
 inc word [label_a]
Nope:
 . . .

Address Binding - Absolute Addressing?

! One approach is to use absolute addressing so that
the binary executable contains physical addresses:

C source code
int a; // global
. . .
if (a != 0) {
 a++;
}
. . .

Compiled Assembly Code
 . . .
 cmp [label_a], 0
 jz Nope
 inc word [label_a]
Nope:
 . . .

 Address Text

0x5623FAB2 AFFB 0x6677FFBB // cmp [label_a], 0
0x5623FAB4 DC32 0x5623FAB8 // jz Nope
0x5623FAB6 E013 0x6677FFBB // a++
0x5623FAB8 ...

0x6677FFBB 0 // “int a” is here

Problems of Absolute Addressing
! Absolute addressing is simple, but is has not been used in decades
! Anybody sees what a problem is with it?
! With absolute addressing a program must be loaded exactly at the

same place into memory each time we run it
" Otherwise the addresses will be wrong!

! Therefore we may not be able to run a program because another program is
running and encroaches on the address range!

! Corollary: We cannot run multiple instances of a single program!
! One solution would be to recompile a program each time you need to run it

" Because only when you’re about to run a program can you know where it should fit
in memory

" But this has problems: while you’re recompiling it somebody else starts another
program…

! Bottom-line: absolute addressing is not a good idea and hasn’t been used
for a loooong time on general-purpose computers

Problems of Absolute Addressing
! Absolute addressing is simple, but is has not been used in decades
! Anybody sees what a problem is with it?
! With absolute addressing a program must be loaded exactly at the

same place into memory each time we run it
" Otherwise the addresses will be wrong!

! Therefore we may not be able to run a program because another program is
running and encroaches on the address range!

! Corollary: We cannot run multiple instances of a single program!
! One solution would be to recompile a program each time you need to run it

" Because only when you’re about to run a program can you know where it should fit
in memory

" But this has problems: while you’re recompiling it somebody else starts another
program…

! Bottom-line: absolute addressing is not a good idea and hasn’t been used
for a loooong time on general-purpose computers

Address Binding - Relative Addressing?
! We can solve the problem of absolute addressing with a very simple

idea called relative addressing
! Assume the address space starts at some BASE address, and compute

all addresses as an offset from the BASE:

 Address Text
0x56230000 F43D 0x5623000 // set BASE = 0x56230000

0x5623FAB2 AFFB BASE + 1054FFBB // cmp [label_a], 0
0x5623FAB4 DC32 BASE + FAB8 // jz Nope
0x5623FAB6 E013 BASE + 1054FFBB // a++
0x5623FAB8 ...

0x6677FFBB 0 // “int a” is here

! The code is now completely relocatable: Only the BASE needs to be
determined before running it

! The same program can be run anywhere in memory (at whatever BASE
address)

! Multiple instances can run, each with a different BASE address, provided they
don’t overlap

RAM Virtualization

! All addresses in the process address space are
expressed as an offset relative to the base value

! A program can be anywhere in RAM and doesn’t
care where:
" Instead of saying “the 4th byte in my address space

is at address x”, it says “the 4th byte in my address
space is at address BASE + 4”

! And just like that we have memory virtualization!
! OSTEP shows C programs that highlight this

" OSTEP 2.2
! Let’s do another simple example here…

Memory-Virtualization Uncovered
Memory-Allocating Program

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
int main(int argc, char **argv) {
 if (argc != 2) {
 fprintf(stderr,"Usage: %s <int value>\n", argv[0]); exit(1);
 }
 int value;
 if (sscanf(argv[1], "%d", &value) != 1) {
 fprintf(stderr,"Invalid command-line argument\n");
 exit(1);
 }
 int *address = (int*)malloc(sizeof(int));
 *address = value;
 printf("I wrote value %d at address %p\n", value, address);
 sleep(10);
 printf("At address %p I see value %d\n", address, *address);
 exit(0);
}

Compile and run on Linux
gcc -o memory_virtualization memory_virtualization.c -fsanitize=address

Let’s run two instances in two terminals

Take Away
! Both programs print the same address, therefore it cannot be a

physical address!
! Instead, the address issued by programs and handled by the CPU

are logical addresses or virtual addresses (both terms are used)

! What was that -fsanitize=address thing???
" This command-line option to gcc enables the use of AddressSanitizer
" AddressSanitizer is an open-source tool developed by Google

! It is supported by most compilers on Linux and MacOS
" It detects memory errors for C/C++

! buffer overflow, stack overflow, use after free, stack overflow
" It turns out that to do its work AddressSanitizer disables address space

layout randomization (ASLR)
" Let’s remove that option and see what happens....

Memory Virtualization
! Thanks to virtualization: Each program instance has the illusion

that it’s alone in RAM and that its address space starts at
address 0

! This gives us Memory Protection
" A program doesn’t need to know anything about other programs
" It never has to think “ooh... I shouldn’t write there in RAM because

that address is used by another program”
" This is good, because when you write the code you don’t know what

other programs will be running anyway!

! Bottom Line: A program references a logical address space,
which corresponds to a physical address space in the memory

! “Something” needs to tell the CPU how to translate from virtual
to physical addresses, i.e., some address translation mechanism

Virtualizing Address Spaces
! Some component needs to translate virtual addresses into physical

addresses: add an offset to the BASE
! Address translation happens very frequently (each load, store, jump)
! Therefore: The BASE Address is accessed very frequently

" The memory translation component should store it in a register or something
as fast as a register

! And: Offsets are added to the BASE address very frequently
" Wasting even one CPU cycle to do the addition would be very expensive

! Furthermore: It would be nice if only valid logical addresses were
translated

" For memory protection: we don’t want processes to step on each other’s toes
! So we use a base register and a limit register that stores the base

address and the largest possible logical address
! And we implement the above as a super fast hardware component:

the Memory Management Unit (MMU)

Memory Management Unit

! Historically: A specialized circuit between the CPU and the memory
! Nowadays: Integrated with the CPU

CPU RAM

logical
address

346

Memory Management Unit

! Historically: A specialized circuit between the CPU and the memory
! Nowadays: Integrated with the CPU

CPU

MMU

RAM

Limit register
1000

< ?

logical
address

346

No

Trap: address
too large

Memory Management Unit

! Historically: A specialized circuit between the CPU and the memory
! Nowadays: Integrated with the CPU

CPU

MMU

RAM

Limit register
1000

Base register
1534

< ? +

logical
address

346

Yes

No

Trap: address
too large

physical
address

1534+346

Summary So Far
! Your program generates only logical addresses

between 0 and some upper bound (the limit)
! Each such address is checked to see if it’s beyond the

limit
! If not, then the address is translated (just add it to the

base)
! That translated physical address is then sent to the

memory bus

! Bottom line:
" Your CPU only “sees” logical addresses
" Your RAM only “sees” physical addresses

Segmentation
! Recall the structure of the address

space
" The figure doesn’t show the ”data” part

! An address space is full of empty
space

" In which the heap/stack will grow
! Therefore having a single contiguous

“segment” is wasteful

! Segmentation: Avoid waste by
breaking up the address space into
pieces

" Each piece has its own base/limit
register

150 SEGMENTATION

16KB

15KB

14KB

6KB

5KB

4KB

3KB

2KB

1KB

0KB

Program Code

Heap

(free)

Stack

Figure 16.1: An Address Space (Again)

address space, we have three logically-different segments: code, stack,
and heap. What segmentation allows the OS to do is to place each one
of those segments in different parts of physical memory, and thus avoid
filling physical memory with unused virtual address space.

Let’s look at an example. Assume we want to place the address space
from Figure 16.1 into physical memory. With a base and bounds pair per
segment, we can place each segment independently in physical memory.
For example, see Figure 16.2 (page 151); there you see a 64KB physical
memory with those three segments in it (and 16KB reserved for the OS).

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG

Segmentation
! The logical address space is now a collection of segments
! The compiler/language interpreter handles the segments and the

logical addresses are built appropriately
" If you write in assembly language, you may have to deal with

segments manually
! Typical segments used by a C compiler

" text
" data
" heap
" stacks
" standard C library

! The first bits of the logical address are used to identify which
segment is being referenced

! Let’s see this on a picture

MMU Segmentation

! Implementing segmentation is easy
! Reserve bits (e.g., the left-most ones) in the logical address to

reference a segment (the segment bits)
! Question: how do we know which segment is being referenced?

CPU

MMU RAM
Limit Base

< +

segment offset

Text
Limit Base

< +

Limit Base

< +

Data

Heap

Segment?

Text
Segment

Heap
Segment

Data
Segment

Segment Table
! A segment table with one entry per segment number is used to

keep track of segments
! For each segment, its entry stores:

" Base: Starting address of the segment
" Limit: Length of the segment

! The segment table is stored in memory
" (but cached on the CPU to avoid extra memory accesses… a common

theme we’ll come back to)
! A Segment-Table Base Register (STBR): Points to the segment

table address
! A Segment-Table Length Register (STLR): Gives the length of

the segment table
" Makes it easy to detect an invalid segment offset

! These registers are saved/restored at each context switch

Segmentation for Protection
! Now that we have each “piece” of the address space in

its own segment we can easily implement some
protection mechanisms!

! The segment table can include bits that answer:
" Is the segment readable?
" Is the segment writable?
" Is the segment executable?
" Any combination of 3 bits: RWX

! RX: Read and execute (e.g. text)
! RW: Read and write (e.g. stack)

! This allows the CPU to detect errors/bugs such as
“executing data as if it were code”, “overwriting code”, ...

Conclusion
! We now have a basic understanding of how memory

addresses can be virtualized
! Main concept: the CPU sees logical addresses, and the MMU

transforms them into physical addresses
" Determines the segment
" Look up the segment table to find the segment’s base and limit

values
" Check that the logical address is within the limit, and if not

generate a trap
" Add the base to the logical address
" And voila, we have the physical address

! Next up: what happens if our program does not fit in RAM?

