A Very Brief History
of OSes

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

" J
The Pre-History

m Farly OSes were just libraries

Just some code as wrapper around tedious low-level
stuff that users just didn’t want to write

No real abstractions
No virtualization
No resource allocation
® One program ran at a time, controlled by a human
operator
This was known as “batch mode”

A big challenge was that the machine shouldn’t be
Idling, due to high cost

Absolutely no interactivity

" JE
System Calls

®m Beyond Libraries

People realized that user code should be
differentiated from kernel code, and that kernel
code should be “special”

In pre-historic OSes, any program could do
anything to any hardware resource

And so a bug in your code could crash the
computer/devices

®m Development of the concept of a system call

Programs now written as “please OS do something
for me” as opposed to as “I'll do it myself”

"
Multiprogramming

® Multiprogramming led to the first “real OSes” (from
our modern perspective)

®m Came about to improve CPU utilization (while

program #1 is idling, program #2 should be able to
utilize the CPU)

®m Development of context-switching and memory
protection (which we’ll discuss at length)

® Beginning of concurrency
m Development of UNIX

m Make sure you read the “Importance of UNIX" box
in OSTEP 2.6 (page 15)

" A
The Modern Era: PCs

® The PC changed the world (IBM, Apple)
® The OSes on these machines were... lacking

® Many see them as a step backward when compared to UNIX
Worse memory protection (MS-DOS)
Worse concurrency (MacOS v9)
See the “Unfortunately, ...” paragraph in OSTEP 2.6 :)

m But eventually, the good features of older OSes crept back in
Mac OS X has UNIX as its core
Windows NT was radically better than its predecessors

® The OSes you use (and like?) today have more to do with those
from the 1970’s than those from the 1980’s

My Apple laptop and phone basically run UNIX

m Make sure you read the “And then came Linux” box in OSTEP
2.6 (page 16)

OS Genealogy

@ D B Windows 95 L?;D] to BE Windows10
. B \Wetows ° um
ﬂn 9 !fstﬁs% Wind I;ms; > Windows NT Windows 200
System @_ Mac Syitem Sog';wgre 1.0 @ _—
& Family Tree S ©debian ——

@ ubuntu e

g Mint
UNIX kernel fedora ‘ redhat- — A @r

. - &]
AM[GA OS Mach kernel t}/ \ Scientific Linux

@ / \ Gentoo ‘@& CentOS

QNX @ 1 .

/

2 QNIX BSD kernel @

. -—
d FreeBSD, Net?SD

4

Linux kernel +
GNU software

openSUSE

an>301d _ ‘
Aarchlmux Chrome O

» DarwinOS
%@SunOS i T OpenDarwin —

| \
LYy \ X PureDarwin
SOla rIS @pen.‘; :‘ 5 Dragon FlYBSD ?gf;g?;d by Ethan Gates

0SX/mac0S S

Unmodified from https://qgithub.com/EG-tech/digipres-posters

https://github.com/EG-tech/digipres-posters

"
OS Design Goals

m Abstraction: to make the use of the computer convenient
Building abstractions is of what Software Development is about
Designing good abstractions will be part of your careers

® Performance: Minimize OS overhead (time, space)

Often conflicts with the previous goal

m Protection: Programs must execute in isolation
Comes from virtualization

m Reliability: The OS must not fail

Thus OS software complexity is a concern (e.g., is it worth adding 2,000 lines of
complex code to improve something by some epsilon?)
m Resource efficiency: The OS must make it possible to use hardware
resources as best as possible

® There is no “best design” to achieve all the above, but many lessons
have been learned and we have converged to a common set of widely
accepted principles

" J
Mechanism / Policy

® One ubiquitous principle: separating mechanisms and policies
Policy: what should be done
Mechanism: how it should be done (e.g., API functions)

m Separation is important so that one can change policy without
changing the mechanisms

® Mechanisms should be low-level enough that many useful policies
can be built on top of them
e.g., Too high-level APIs may simply not allow you do do what you need
to do in our program
® Mechanisms should be high-level enough that implementing
useful policies on top of them is not too labor intensive

e.g., Too low-level APls may require you to write hundreds of lines of
code that you’d rather not have to write/debug
B Some OS designs take this separation principle to the extreme
(e.g., Solaris), and others not so much (e.g., Windows 7)

" JEE
Separating Mechanisms and Policies

® This idea of “separating of mechanisms and policies”
probably sounds pretty vague/abstract/useless to many of
you

® Yet, you will be confronted to this issue in your future
careers

And it's even on Wikipedia

® But until you've worked on a big system and/or worked on
designing APIs for others to use it's hard to really get it
Designing good APIs is WAY harder than you think!

An OS course is full of fundamental/useful stuff that one realizes
is fundamental/useful often years after taking the course

I'll do my best to try to avoid this, but there are limits on how
much “this is important” jumping up and down | can do
(convincingly)

https://en.wikipedia.org/wiki/Separation_of_mechanism_and_policy

"
Early OS Designs: Monolithic

m Early OSes (and MS-DOS)
® No precisely defined structure

m New “features” piled upon old
ones: snowball effect (usually
breaking, difficult maintenance, ...)

m MS-DOS was written to run in the
smallest amount of space
possible, leading to poor
modularity, separation of
functionality, and security

"~ e.g., user programs can directly
access some devices

"~ e.g., no difference in execution of
user code and kernel code (so000
insecure! we’ll see how this is done
today...)

" JA
The MS-DOS Memory Trick

® In MS-DOS, due to memory limitations, user programs used to wipe
out (non-critical) parts of the OS to get more RAM for themselves

Kernel Part of the command Kernel
interpreter is overwritten $‘ Reduced
/ by the process’ address Command
I
Full space” Interpreter
Command
Interpreter
The part that’s left is the
code to re-load the full Process
command-interpreter!
Available
I\/Iemory Available
Memory

® |t's hard for use to fathom the constraints developers worked with in that era...

"
OS Design: Layered

La

aCe) ® | ayer i only calls layer

-1
B “Looks” like a clean
design, but it's fraught
with difficulties
® Deciding what goes in
each layer is hard due
to circular dependencies
® Deciding on the best
number of layers is hard
Too many: high
overhead
Too few: bad modularity

" S
OS Design: Layered

®m The First UNIX has some layers
m But the kernel was still very large and difficult to maintain evolve

Kernel Interface to the Hardware

Hardware (Terminal, disks, tapes, memory)

"

OS Design: Microkernels

m Concept: 1967; Practice: 1980s
m Basic idea: Remove as much as App || App || App || App

possible from the kernel and put it
all in system programs

®m The Kernel only does essential
management (process and
memory), and basic IPC (Inter-
Process Communication)
m Everything is implemented in
client-server fashion
= Aclient is a user program

= A server is a running system
program, in user space, that
provides some service

© Communication is through the
microkernel communication
functionality
® This is very easy to extend since
the microkernel does not change

" J
OS Design: Microkernels

m 1980s: First LANs
m |_ed to a “Everything must be distributed” philosophy

Client-Server based architectures will solve all issues
So the kernel must have a client-server architecture as well

® Mach microkernel (Carnegie Mellon University): Research Project
Precursor of macOS

®m Major issue: increased overhead because of IPC
Windows NT 4.0 had a micro-kernel (and was slower than Windows 95)
Oops... Microsoft put things back into the Kernel
Windows XP (and 10 apparently) is closer to monolithic than microkernel

m Experts were very opinionated about what is a good kernel and
what is not

Development/research around microkernels stopped in the 2000s
But we know that a huge kernel is a problem!

" J
OS Design: Modules

® Take good things from all kernel design

® Most modern OSes implement modules
Use an “object-oriented” approach
Each code component is separate
They talk to each other over known APls
This is just good software engineering

m | oadable modules: Load at boot time or at runtime when needed
m | ike a layered interface, since each module has its own interface
m | ike a microkernel, since a module can talk to any other module
But communication does not use IPC, i.e., no overhead
m Bottom-line: advantages of microkernels without the poor performance

® Pioneer: Solaris (Sun Microsystems, then Oracle)

Small core kernel, 7 default modules loaded at boot, other modules loadable
on the fly whenever needed

Most agree it was a “nice” kernel / OS

" J
OS Design: General Principles

® No modern OS strictly adheres to on of these designs
(except for educational purposes)

® The accepted wisdom

Don’t stray too far from monolithic, so as to have good
performance

Modularize everything else to still be able to maintain the
code base

® |t's a complicated balancing act and every kernel does it
a little bit differently

And it's hard to compare metrics like LOC (lines of code)
because different OSs have different components “in the
kernel” or “outside the kernel”

" A
Conclusion

B OSes have a “long” and exciting history

m | essons from past failures and successes have given
us current OS designs

m A key design principle is Separation of Mechanisms
and Policies

® Reading Assignment: OSTEP 2.5-2.6

