
Henri Casanova (henric@hawaii.edu)

ICS332 
Operating Systems 

Operating System 
Interfaces



OS Interfaces

Hardware

Kernel code

System Call Interface 

User Interfaces 

Process 
Control I/O Memory 

Management
File 

System Accounting Security

Graphical Command-Line API and standard 
libraries



Graphical User Interfaces
 Early 1970s (Xerox PARC research)  

 Popularized by Apple’s Macintosh 
(1980s)  

 Many UNIX users still use the 
command-line heavily, while 
Windows users usually prefer the 
GUI  

 Mac OS < 10: no CLI, but Mac OS ≥ 
10 does: Terminal 

 Question: Is the GUI part of the OS 
or not?  

 Windows: YES 
 MacOS: YES 
 Linux: NO



Command-Line Interfaces (CLI)
 Also known as the Shell 
 Provides many built-in commands 

 On my Mac: man builtin (cd, echo, pwd, which, …) 
 It is often used to invoke low-level system programs 

 On UNIX-like systems, often brief one-word executables (ls, ps, 
sed, grep, …) 

 Not part of the OS, but often installed with it 
 It is often used to invoke user programs 
 The distinction between system and user programs is vague 

at best and really not useful because it’s a matter of 
perspective  

 What about ls? If you’re a kernel developer, then it’s a high-level 
application. If you’re a novice Linux user, then you probably think of 
it as some “OS thing”…



The System Call (Syscall) API
 System calls, or syscalls, provide the lowest-level interface to the OS 
 GUIs and CLIs (and in fact all programs!) are built on top of the 

System Call API 
 Often programs will use some library, that uses some library, that 

uses some “standard” library, and then uses the system call API 
 It all boils down to system calls (unless your program does nothing but 

compute) 
 You can think of your running program as doing one of two things:  

 Either fetch-decode-execute instructions that you wrote or that are in the 
libraries that you use 

 Or fetch-decode-execute instructions that are in the kernel because your 
program placed a system call 

 We will use the system call API (or low-level standard libraries that 
use it) in programming assignments 

 But turns out you can spy on system call usage…



Spying on System Calls

 There are tools to “spy on processes” and 
see the system calls they place as they 
happen!  

 strace in Linux 
 dtruss in macOS 
 ProcMon in Windows 

 Why is this useful? 
 Find bugs, find performance bugs, detect 

malware, reverse-engineer code, and learning :) 
 Let’s look at strace in Linux…



strace Example Uses
-i option: shows the value of the Program Counter
strace -i sleep 1

-x option: shows non-ASCII characters in hex
strace -x touch /tmp/foo

-c option: obtain cumulative statistics

mkdir tmp; cd tmp     
for a in `seq 0 9`; do  
  for b in `seq 0 9`; do  
    touch $a$b; 
  done 
done 
strace -c rm *

-p option: attach to a running process (may require sudo)
strace -p <pid of process>  # let’s spy on sshd!



System calls
 There are many system calls in a typical OS 

(~300-400 in Linux) 
 Each system call is identified by a unique number, 

stored in an internal table called the syscall table 
 Let’s look at the x86 syscall table 

 The system call numbers are in some standard header file 
(.h) 

 There are system calls for everything that you’d 
expect (to manage processes, memory, files, 
devices, communication, permissions, etc.) 

 System calls make it possible to access hardware 
resources virtualized by the OS

https://x86.syscall.sh/


Timing Programs and System Calls

 The UNIX time command can be used to see 
what time a program spends running user code 
and what time it spends running kernel code 
(i.e., system calls)  

 Does not have a great resolution, so results can be 
weird when timing lightning quick programs  

 It reports:  

 Real time: The time you experience (also called wall-
clock time, elapsed time, execution time, run time…) 

 User time: The time spent executing user code 
 System time: The time spent executing kernel code 



Measuring System Time 
 Lets use the time command for 

 Archiving/Compressing some directory 
 Running du on a large and deep directory 
 Running jekyll 

 We observe: real time ≠ user time + system time 
 What’s the missing time? 



Measuring System Time 
 Lets use the time commend for 

 Archiving/Compressing some directory 
 Running du on a large and deep directory 
 Running jekyll 

 We observe: real time ≠ user time + system time 
 What’s the missing time? 



Measuring System Time 
 Lets use the time commend for 

 Archiving/Compressing some directory 
 Running du on a large and deep directory 
 Running jekyll 

 We observe: real time ≠ user time + system time 
 What’s the missing time? I/O!

User System I/O

real time

 I/O time could be waiting for the disk, network, keyboard, etc. 
 real time = user time + system time + i/o time



System Calls are Expensive
 The OS tries to be fast  

 Kernel developers are good at writing lean/mean code 
 But system calls can be expensive  

 Especially when they involve some hardware overhead (i.e., waiting for 
the disk)  

 As a programmer you should use system calls wisely (if you care 
about speed at all)  

 This can fly in the face of what you learn in the CS curriculum 
 Well-known example  

 ICS111/211: Data structures are great, so use them 
 BUT, your code may end up calling malloc/free all the time! 
 So then you want to use arrays 
 But then everything’s ugly/cumbersome because an array is such a 

restrictive data structure  
 The life of the developer is about making difficult compromises 



The System Call API
 System calls can be complicated to place 

 Therefore, there is a system call interface, i.e., a set of useful 
functions ,often provided in standard libraries, that are “easier-
to-use wrappers” around the raw system calls e.g., the fork() 
“system call” is a simple interface to the clone() system call 

 e.g., When in C you open a file with fopen(), and fopen() calls 
the more complicated open() system call on your behalf  

 Often one says “I am placing a system call” even when calling 
a higher-level library function 

 If the API is standard then the code can be portable!  

 Windows: Windows 16, Windows 32, Windows 64 API 
 UNIX: POSIX (Portable Operating Systems Interface IEEE-IX)  
 Java API: The JVM has OS-like functionalities on top of the OS 



Standard APIs: Writing a file

 System Call in C (man 2 write) 
 Really a low-level library that directly invokes the 

system call for you, since one doesn’t simply call a 
system call from user code, as we’ll see 

 ssize_t write(int fildes, const void *ptr, 
size_t nbyte); 

 Higher level library in C (man fwrite) 
 size_t fwrite(const void *ptr, size_t size, 
size_t nitems, FILE *stream);  

 Java: OutputStream::write (see JavaDoc) 
 public void write(byte[] b) throws IOException; 
 Most details are hidden thanks to OO approach



Standard APIs: Writing a file

 System Call in C (man 2 write) 
 Really a low-level library that directly invokes the 

system call for you, since one doesn’t simply call a 
system call from user code, as we’ll see 

 ssize_t write(int fildes, const void *ptr, 
size_t nbyte); 

 Higher level library in C (man fwrite) 
 size_t fwrite(const void *ptr, size_t size, 
size_t nitems, FILE *stream);  

 Java: OutputStream::write (see Javadoc) 
 public void write(byte[] b) throws IOException; 
 Most details are hidden thanks to OO approach

Returns a possibly negative 
number (-1 means “failure”)

Returns a >=0 number (< size 
means failure)



Standard APIs: Writing a file

 System Call in C (man 2 write) 
 Really a low-level library that directly invokes the 

system call for you, since one doesn’t simply call a 
system call from user code, as we’ll see 

 ssize_t write(int fildes, const void *ptr, 
size_t nbyte); 

 Higher level library in C (man fwrite) 
 size_t fwrite(const void *ptr, size_t size, 
size_t nitems, FILE *stream);  

 Java: OutputStream::write (see Javadoc) 
 public void write(byte[] b) throws IOException; 
 Most details are hidden thanks to OO approach

Takes in a number of bytes

Takes in a number of elements 
and an element size



Standard APIs: Writing a file

 System Call in C (man 2 write) 
 Really a low-level library that directly invokes the 

system call for you, since one doesn’t simply call a 
system call from user code, as we’ll see 

 ssize_t write(int fildes, const void *ptr, 
size_t nbyte); 

 Higher level library in C (man fwrite) 
 size_t fwrite(const void *ptr, size_t size, 
size_t nitems, FILE *stream);  

 Java: OutputStream::write (see Javadoc) 
 public void write(byte[] b) throws IOException; 
 Most details are hidden thanks to OO approach

Takes in a file descriptor 
number

Takes in a higher-level FILE 
“object”



A Word on the JVM
 The JVM is just a 

program  

 It interacts with the OS 
using the System Call 
API, like any other 
program 

 It knows how to 
interpret byte code that 
places calls to the Java 
API 

 To implement some of 
these Java API calls, 
the JVM places System 
Calls

JVM Program

Systems Call API

Kernel

Hardware

javac

java

Java Code

Java Byte Code



Conclusion
 OSes come with interactive interfaces  

 Shells, GUIs  
 All are based on the System Call API  

 All (useful) programs use this API  

 Directly or indirectly via standard library calls  
 On Linux, the strace tool makes it possible to spy on 

how a program uses the System Call API  

 On UNIX-ish systems, the time tool makes it possible 
to measure time spent in system calls 


