
Henri Casanova (henric@hawaii.edu)

ICS332

Operating Systems

The Kernel

What is the Kernel
 The OS is software, and it has many components:

 User interface (graphical, terminal)

 File system

 Device drivers (code that knows how to “speak” to all kinds of

external devices)

 System utilities to manage the system (think the “control

panel”)

 Libraries (to make software development easier)

 The Kernel

 There is some debate about what’s “in the OS” and what’s not

 But everybody agrees about the kernel

 The kernel is the core component of the OS in charge of resource

virtualization and allocation

 It does all the special/dangerous things that we don’t want user

programs to be able to do

Who Writes the Kernel?
 Kernel Developers :)

 Initially, kernels were written in assembly only (yikes!)

 Since 1960s: written in high-level languages (MS-DOS being an
exception)

 Usually with a language in the C-language family

 C-like languages are “close” to the hardware and make it easy for
developers to play “tricks” to make the code space- and time-efficient

 Compilers for these languages are really good at making fast executables
for our CPUs

 Windows, Linux, iOS, MacOS kernels have been written mostly in
C/C++

 With parts still in assembly (e.g., for calling specific CPU instructions)

 In late 2022, Rust has become an official language for Linux Kernel

development, in addition to C, and Rust kernel code is being
developed (e.g., device drivers)

Kernel Development
 OS kernels are among the most impressive/challenging software

development endeavors

 Good news: a lot of very smart people have already written the critical

parts of kernels

 As a kernel developer a constant concern is to not use too much
memory so as to reduce memory footprint

 Hence the need to write lean and mean code and data structures

 Hence the struggle about whether to add new features

 Another constant concern is speed

 You cannot use standard libraries

 Since you’re writing the kernel, which sits below the libraries

 Nobody is watching over you, and bugs lead to crashes

 Let’s look at some examples from the Linux kernel code...

 You’re not in ICS212 anymore!

Non-portable intrinsics

 In kernel code you often see things like the above

 The __builtin_expect keyword is a gcc directive where

you get to indicate whether the condition is typically true or false

 In the example above, the 0 second argument means “typically false”

 This is useful because then the compiler can generate faster
code (by 1 or 2 cycles)

 This has to do with pipelining and branch prediction (see a Computer
Architecture course)

Faster conditional with a gcc directive

if (__builtin_expect(n == 0, 0)) {

 return NULL;

}

Bitwise operations and macros

 Bitwise operations are super fast/useful, and used a lot in Kernel
code (due to having to encode information in as few bits as
possible)

Bitwise operations galore, often macroed

#define MODIFY_BITS(port, mask, dir) \

 if (mask) { \

 val = sa1111_readl(port); \

 val &= ~(mask); \

 val |= (dir) & (mask); \

 sa1111_writel(val, port); \

 }

MODIFY_BITS(gpio + SA1111_GPIO_PADDR, bits & 15, dir);

MODIFY_BITS(gpio + SA1111_GPIO_PBDDR, (bits >> 8) & 255, dir >> 8);

MODIFY_BITS(gpio + SA1111_GPIO_PCDDR, (bits >> 16) & 255, dir >> 16);

Macros, macros, …

 Due in part to C’s limitations, kernel developers typical define
many macros

Bitwise operations galore, often macroed

#define DIV_ROUND_CLOSEST(x, divisor)({ \

 typeof(x) __x = x; \

 typeof(divisor) __d = divisor; \

 (((typeof(x))-1) > 0 || \

 ((typeof(divisor))-1) > 0 || (__x) > 0) ? \

 (((__x) + ((__d) / 2)) / (__d)) : \

 (((__x) - ((__d) / 2)) / (__d)); })

#define container_of(ptr, type, member) ({ \

 void *__mptr = (void *)(ptr); \

 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \

 !__same_type(*(ptr), void), \

 "pointer type mismatch in container_of()"); \

 ((type *)(__mptr - offsetof(type, member))); })

In-line Assembly

 At many points in the kernel code there is inline assembly

 These are lines of assembly code that are spliced into the C code

 For speed or for doing things that would be difficult / impossible in C

 The syntax above is x86 ATT syntax

Code fragment with in-line assembly
while (size >= 32) {

 asm("movq (%0), %%r8\n" "movq 8(%0), %%r9\n"

 "movq 16(%0), %%r10\n" "movq 24(%0), %%r11\n"

 "movnti %%r8, (%1)\n" "movnti %%r9, 8(%1)\n"

 "movnti %%r10, 16(%1)\n" "movnti %%r11, 24(%1)\n"

 :: "r" (source), "r" (dest)

 : "memory", "r8", "r9", "r10", "r11");

 dest += 32;

 source += 32;

 size -= 32;

 }

Who puts the Kernel in RAM?
 This happens during boot

 Putting the kernel in RAM is the primary objective

 When you turn on your computer, POST (Power-On Self-Tests) are

performed by the BIOS (Basic Input Output System)

 Checks that RAM, disks, keyboard, etc. are all ok

 Performs all kinds of initializations of registers and device controllers

 The BIOS is your computer’s firmware: stored in non-volatile
memory (doesn’t need to be powered on to hold data)

 It used to be stored in a ROM chip (Read Only Memory), which
means that a “firmware upgrade” would involved replacing the chip

 Nowadays it’s stored in EEPROM / flash memory, which can be
rewritten to do a firmware upgrade

 Which opens security issues, and the possibility of a bug in the BIOS,
which could turn your machine into the proverbial “brick”

 People still say “BIOS” but there have been some changes….

Basic Input Output System (BIOS)

Unified Extensible Firmware Interface (UEFI)

Basic Input Output System (BIOS)

Still says BIOS

• Can do a lot more than the
old BIOS

• Introduced in 2007

• Most computers today

ship with UEFI instead of
the old BIOS

Finding a Bootable Device
 Configured in the BIOS is an ordered list of storage devices

(disks, USB disks, CD-Rom, etc.)

 This list is configurable in the BIOS

 You may wonder how that works because the BIOS is stored in

ROM!

 Turns out, the list of bootable devices is stored in a small battery-powered

CMOS memory, so that it keeps data even when the computer is powered
off

 And so the user can modify that list!

 The BIOS then goes through each device in order and
determine whether it is bootable

 It finds out whether the device contains a boot loader program

 This is a program that knows how to load the kernel!

 This is done in different ways (Master Boot Record, GUID Partition
Table) and tons of technical details are available online

 On my Mac: /System/Library/CoreServices/boot.efi

Selecting a bootable device

The Boot Loader Program
 The BIOS loads the boot loader program into RAM and

hands over control to it (i.e., starts the fetch-execute-
cycle from the boot loader program’s first instruction)

 The boot loader program is the first program that runs
on the machine

 Linux: GRUB, LILO, etc.

 Windows: WINLOAD. EXE

 The boot loader program does:

 Perform some initializations to make sure the machine is

ready for the kernel

 Locates the kernel (code) on the bootable device and loads it

into RAM and sets up data structures that the kernel will use

 Then it hands off control to the bootstrap program…

The Bootstrap Program
 The Bootstrap program is a program in Kernel code

that

 Does all “kernel initializations” (interrupt handles, timer,

memory unit, etc.)

 Configures and load all device drivers necessary for the

detected attached devices

 Starts system services (processes) that should be running

 For instance, on Linux, the “init" process

 Launches whatever application necessary for a user to

start interacting with the OS

 Often this is done in a chain of loading/executing

programs, each of them doing part of the work
because loading/executing the next one

The Booted OS

 The kernel code and data
reside in memory at a
specified address, as
loaded by the bootstrap
program(s)

 This picture is not to scale

 The kernel’s memory

footprint has to be small

 This is memory the user

cannot use

Kernel

Available
Memory

0xFFFFFFFF

4GB RAM

0x00000000

The Booted OS
 Each running program’s code

and data is then loaded into
RAM

 A running program is called a
process

 In RAM we thus have 2 kinds of
code/data:

 User code/data

 Kernel code/data

 A process can run kernel code
via system calls

 Show of hands: who has heard
that term before?

Kernel

Available
Memory

0xFFFFFFFF

4GB RAM

0x00000000

Process

The Booted OS
 This figure shows 3 processes,

occupying almost the full RAM

 Remember the OS illusion: each
process thinks its alone, and
processes never step on each other’s
toes in RAM (this is called memory
protection)

 This figure makes drastic
simplifications, and we’ll see that the
real picture is very different

 But we can keep this simple picture in
mind for a while

 If you want to know the list of
processes running in your UNIX-ish
machine: ps aux

Kernel

Available 0xFFFFFFFF

4GB RAM

0x00000000

Process1

Process 2

Process 3

The Kernel: An Event-Handler
 The Kernel is nothing but an event handler

 After boot nothing happens until an event occurs!

 Once the system is booted, all entries into the kernel

code occur as the result of an event

 The kernel defines a handler for each event type

 When an event occurs, the CPU stops what it was
doing (i.e., going through the fetch-decode-execute
cycle of some program), and instead starts running
Kernel code

 Just set the Instruction Counter register to the address of

the first instruction in the appropriate event handler

 There are two kinds of events…

Interrupts and Traps
 Interrupts: Asynchronous events

 Typically some device controller saying “something happened”

 e.g., “incoming data on keyboard”

 The kernel could then do: “great, I’ll write it somewhere in RAM and I’ll let

some running program know about it”

 ”Asynchronous” because generated in real time from the “outside
world”

 Traps: Synchronous events (also called exceptions or faults)

 Caused by an instruction executed by a running program

 e.g.,“the running program tried to divide by 0”

 The kernel could then do: “terminate the running program and print some

error message to the terminal”

 ”Synchronous" because generated as part of the fetch-decode-
execute cycle from the “inside world”

 The two terms are often confused, even in textbooks…

The Kernel’s (unrealistic) pseudo-code
Event handling code

class Kernel {

 method waitEvent() {

 while (doNotShutdown) {

 event = sleepTillEventHappens();

 processEvent(event);

 }

 }

 method processEvent(Event event) {

 switch (event.type) {

 case MOUSE_CLICK:

Kernel.MouseManager.handleClick(event.mouse_position); break;

 case NETWORK_COMMUNICATION:

Kernel.NetworkManager.handleConnection(event.network_interface); break;

 case DIVISION_BY_ZERO:

Kernel.ProcessManager.terminateProgram(“Can't divide by zero"); break;

 }

 return;

}

System Call: A Very Special Trap

 When a user program wants to do some “OS
stuff”, we’ve said it places a system call

 e.g., to open a file, to allocate some memory, to get
input from the keyboard, etc.

 Essentially, to do anything that’s not just “compute”

 A system call is really just a call to the kernel

code

 “Please kernel, run some of your code for me”

 We’ll see how they work later

 But for now we can just think of it as just
another case in our pseudo-code...

The Kernel’s (unrealistic) pseudo-code
Event handling code
class Kernel {

 method waitEvent() {

 while (doNotShutdown) {

 event = sleepTillEventHappens();

 processEvent(event);

 }

 }

 method processEvent(Event event) {

 switch (event.type) {

 case MOUSE_CLICK:

Kernel.MouseManager.handleClick(event.mouse_position); break;

 case NETWORK_COMMUNICATION:

Kernel.NetworkManager.handleConnection(event.network_interface); break;

 case DIVISION_BY_ZERO:

Kernel.ProcessManager.terminateProgram(“Can't divide by zero"); break;

 case SYSTEM_CALL:

Kernel.doSystemCall(event); break;

 }

 return;

}

Conclusion
 The kernel is code and data that always resides in RAM

 Booting is the process by which the machine goes from

“turned on” to “the kernel has been loaded”

 The kernel is not a running program but really just an

event handler

 When some event occurs, some kernel code runs

 There are two kinds of events: asynchronous interrupts
and synchronous traps

 An important kind of trap are system calls, by which user
programs ask the kernel to do some work on their behalf

 Onward to Operating System interfaces…

