What is an 0S?

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

"
What is an Operating System?

® \What would you say to your non-CS-major friend asking
this? Anybody?

"
What is an Operating System?

® \What would you say to your non-CS-major friend asking this?
Anybody?

m Typical “ok” answer: It is the software layer between the
applications and the hardware because the hardware would be
too difficult for users to use

m Typical “sort of ok” answer: It is “all the code that | don’t have to
write” when | develop software (not quite right since there are
tons of non-OS libraries whose code you don'’t write either)

®m Typical wrong “Big Brother / Eye of Sauron” answer: It is the one
program that runs at all times and watches everything

This is a pervasive but misled view: the OS is not a running
program

® Although it starts programs
Better view: it's code that gets invoked time and again

And there is no need to “reserve” one CPU/core for it
(something you will hear once in a while)

"
What is an Operating System?

® This is not such a simple question

® An OS is a complete software system that manages
access to hardware and makes it possible to run
software applications on that hardware

m A core component of the OS is called the kernel,
which in code and data structure in charge of
managing hardware resources

And is not a running program

® The kernel acts as layer between application
software and the hardware, and it performs
virtualization...

" A
The OS Virtualizes

®m Conceptually, the main role of the OS is
virtualization

The first of the “three easy pieces” of our textbook

B The term “virtualization” is used in many
contexts
The Java Virtual Machine (JVM)
Virtual Machines that one would use in the cloud
® More on this much later in the semester

B |n the context of OSes we mean two things:

Resource abstraction

Resource allocation

" A
Virtualization: Abstraction

® The OS is a Resource Abstractor

m |t defines a set of logical resources that correspond to
hardware/physical resources

m |t defines operations on these logical resources
m Typical examples:

Physical Logical Operations
CPU Running start, terminate, pause,
Programs
Memory (SRAM, DRAM) Data allocate, free, read,
write, ...
Storage (SSD, HDD, Files create, delete, open,
Tapes,...) read, write, ...

Virtualization: Allocation

B The OS is a Resource Allocator

® |t decides who (i.e., which running program) gets
how much (e.g., CPU cycles, bytes of RAM, bytes
on disk) and when/where

Resource Example resource allocation decisions

CPU Should the currently running program keep
going? Which program should run next?

Memory Where in RAM should a running program’s data

be? Should a program be allowed to use more

Storage

Where on disk should pieces of files be stored?

"
Virtualization: Why and How?

® \Why virtualization?

Reason #1: To make the computer easier to program

® There was a time “before OSes” in which the programmer had to
know a lot about the insides of the computer

= Think how easy it is today to write code without understanding/
knowing anything about the hardware
Reason #2: To provide each program with the illusion that it
Is alone on the computer, going through its fetch-decode-
execute cycle

= When you develop a program, you don’t think of what other
programs will be running when your program will run!

= And yet many programs run at once

® How does the OS do it? What a lot of ICS332 is about!

"
The Three Easy Pieces

m Our textbook is called OSTEP: Operating
Systems: Three Easy Pieces
®m The three pieces are:
Virtualization
Concurrency
Persistence

m | et’s talk briefly about concurrency and
persistence....

"
Multi-Programming

® Multi-programming is the name of the OS’s capability to execute
multiple programs concurrently

This is only feasible because the OS provides virtualization

® \We take multi-programming completely for granted (which is why
many of you likely had never even heard of the term)

® But computers used to be used in “single-user mode”, where a
program is truly alone until completion, and then another
program is started, and soon ...

® This had several productivity drawbacks:

Your computer can do only one thing at a time

If the program is idle for a while (e.g., waiting for keyboard input,
waiting for any 1/O), then the CPU cycles are completely wasted

®m OS advances made multi-programming possible, and we never
looked back!

"
Concurrency

® Due to multi-programming, a big issue has been

concurrency, since the OS has to juggle many things “at
the same time”

m |t leads to deep/difficult/interesting issues within the OS

® Furthermore, nowadays most programs are also
concurrent

e.g., for a single program to use multiple cores using multi-
threading (ICS 432 is all about that)

® Therefore, concurrency is everywhere and is a constant
theme in any OS course

Section 2.3 in our reading assignment talks about the main
concurrency problem

If you find it a bit confusing, don't fear, we'll come back to this...

" A
Persistence

B Persistence: the ability to store data that
survives a program termination / a computer
shutdown

® This is done by the file system

Typically considered part of the OS (which
provides “file stuff’ system calls)

Even though it is often developed independently
from the core OS code

" A
Conclusion

B Reading Assignment: 2.1-3. Section 2.4 starts with:

So now you have some idea of what an OS actually does: it takes phys-
ical resources, such as a CPU, memory, or disk, and virtualizes them. It
handles tough and tricky issues related to concurrency. And it stores files
persistently, thus making them safe over the long-term.

OSTEP

m Sections 2.1 and 2.2 show examples programs to
illustrate virtualization, which | didn’t discuss

We’'ll look at similar programs in future modules

m Section 2.3 is about concurrency and will likely be
confusing for most of you

That’s ok, we'll talk about concurrency in a future module
® Coming up next: the kernel

