
Henri Casanova (henric@hawaii.edu)

ICS332 
Operating Systems 

What is an OS?



What is an Operating System?
 What would you say to your non-CS-major friend asking 

this?   Anybody? 
 Typical “ok” answer: It is the software layer between the 

applications and the hardware because the hardware would 
be too difficult for users to use  

 Typical “sort of ok” answer: It is “all the code that I don’t 
have to write” when I develop software (not quite right since 
there are tons of non-OS libraries whose code you don’t 
write either) 

 Typical wrong “Big Brother / Eye of Sauron” answer: It is the 
one program that runs at all times and watches everything 
 This is a pervasive but very misled view: the OS is not 

a running program 
 And there is no need to “reserve” one CPU/core for it 

(something you will hear once in a while)  



What is an Operating System?
 What would you say to your non-CS-major friend asking this?   

Anybody? 
 Typical “ok” answer: It is the software layer between the 

applications and the hardware because the hardware would be 
too difficult for users to use  

 Typical “sort of ok” answer: It is “all the code that I don’t have to 
write” when I develop software (not quite right since there are 
tons of non-OS libraries whose code you don’t write either) 

 Typical wrong “Big Brother / Eye of Sauron” answer: It is the one 
program that runs at all times and watches everything 
 This is a pervasive but misled view: the OS is not a running 

program 
 Although it starts programs 

 Better view: it’s code that gets invoked time and again 
 And there is no need to “reserve” one CPU/core for it 

(something you will hear once in a while)



What is an Operating System?
 This is not such a simple question 
 An OS is a complete software system that manages 

access to hardware and makes it possible to run 
software applications on that hardware 

 A core component of the OS is called the kernel, 
which in code and data structure in charge of 
managing hardware resources 
 And is not a running program 

 The kernel acts as layer between application 
software and the hardware, and it performs 
virtualization…



The OS Virtualizes

 Conceptually, the main role of the OS is 
virtualization  

 The first of the “three easy pieces” of our textbook 
 The term “virtualization” is used in many 

contexts 
 The Java Virtual Machine (JVM) 
 Virtual Machines that one would use in the cloud 

 More on this much later in the semester 

 In the context of OSes we mean two things: 
 Resource abstraction 
 Resource allocation



Virtualization: Abstraction
 The OS is a Resource Abstractor 
 It defines a set of logical resources that correspond to 

hardware/physical resources 
 It defines operations on these logical resources 
 Typical examples:

Physical Logical Operations

CPU Running 
Programs

start, terminate, pause, 
…

Memory (SRAM, DRAM) Data allocate, free, read, 
write, …

Storage (SSD, HDD, 
Tapes,…)

Files create, delete, open, 
read, write, …



Virtualization: Allocation
 The OS is a Resource Allocator 
 It decides who (i.e., which running program) gets 

how much (e.g., CPU cycles, bytes of RAM, bytes 
on disk) and when/where

Resource Example resource allocation decisions

CPU Should the currently running program keep 
going? Which program should run next?

Memory Where in RAM should a running program’s data 
be? Should a program be allowed to use more 
RAM?Storage Where on disk should pieces of files be stored?



Virtualization: Why and How?
 Why virtualization? 

 Reason #1: To make the computer easier to program 
 There was a time “before OSes” in which the programmer had to 

know a lot about the insides of the computer 
 Think how easy it is today to write code without understanding/

knowing anything about the hardware  

 Reason #2: To provide each program with the illusion that it 
is alone on the computer, going through its fetch-decode-
execute cycle 

 When you develop a program, you don’t think of what other 
programs will be running when your program will run! 

 And yet many programs run at once  

 How does the OS do it?  What a lot of ICS332 is about! 



The Three Easy Pieces

 Our textbook is called OSTEP: Operating 
Systems: Three Easy Pieces 

 The three pieces are: 
 Virtualization 
 Concurrency 
 Persistence 

 Let’s talk briefly about concurrency and 
persistence….



Multi-Programming
 Multi-programming is the name of the OS’s capability to execute 

multiple programs concurrently 
 This is only feasible because the OS provides virtualization 

 We take multi-programming completely for granted (which is why 
many of you likely had never even heard of the term) 

 But computers used to be used in “single-user mode”, where a 
program is truly alone until completion, and then another 
program is started, and so on … 

 This had several productivity drawbacks:  

 Your computer can do only one thing at a time 
 If the program is idle for a while (e.g., waiting for keyboard input, 

waiting for any I/O), then the CPU cycles are completely wasted  
 OS advances made multi-programming possible, and we never 

looked back!



Concurrency
 Due to multi-programming, a big issue has been 

concurrency, since the OS has to juggle many things “at 
the same time” 

 It leads to deep/difficult/interesting issues within the OS  

 Furthermore, nowadays most programs are also 
concurrent  

 e.g., for a single program to use multiple cores using multi-
threading (ICS 432 is all about that) 

 Therefore, concurrency is everywhere and is a constant 
theme in any OS course 

 Section 2.3 in our reading assignment talks about the main 
concurrency problem 

 If you find it a bit confusing, don’t fear, we’ll come back to this… 



Persistence

 Persistence: the ability to store data that 
survives a program termination / a computer 
shutdown 

 This is done by the file system 
 Typically considered part of the OS  (which 

provides “file stuff” system calls) 

 Even though it is often developed independently 
from the core OS code



Conclusion
 Reading Assignment: 2.1-3. Section 2.4 starts with:

 Sections 2.1 and 2.2 show examples programs to 
illustrate virtualization, which I didn’t discuss 
 We’ll look at similar programs in future modules 

 Section 2.3 is about concurrency and will likely be 
confusing for most of you 
 That’s ok, we’ll talk about concurrency in a future module 

 Coming up next: the kernel

O
S

TE
P


