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Abstraction



Definition
 A process is a program in execution


 Program: passive entity (bytes stored on disk as an executable file)

 Becomes a process when it is loaded into memory, at which point 

the fetch-decode-execute cycle can begin 

 The process abstraction is defined by the OS to virtualize the CPU


 Multiple processes can be associated to the same program 


 A user can start multiple instances of the same program (e.g., bash)

 Typically many processes run on a system 


 System processes (started by the OS to do “system things”)

 User processes (started by users)

 The terms “process” and “jobs” are used interchangeably in OS 

textbooks

 The set of locations that store bytes that a process can use/

reference is called the process’ address space…



Process Address Space
 The code (also called text)


 Binary instructions, loaded into RAM by the OS from an 
executable file


 The static data

 The global variables and static local variables, which can be 

initialized (.data segment in x86 assembly) or not (.bss 
segment in x86 assembly)


 The heap

 The zone of RAM in which new data can be be dynamically 

allocated (using malloc, new, etc.)

 The runtime stack


 The zone of RAM for all bookkeeping related to method/
procedure/function calls (more in the next slides)



Process Address Space
 The OS can be configured to limit parts of a 

process’ address space

 On UNIX-like systems you can find out what 

some limits are (all in KiB):

 ulimit -d      	 (data + heap)

 ulimit -s  	 (stack size)


 These limits can be changed system-wide 
using the ulimit command


 They can also be changed by the process 
itself using the setrlimit() system call


 Let’s see what limits are on my laptop ⚙ 

 When running a Java program you can 

specify some limits

 java -Xmx512m -Xss1m …

 512 MiB maximum heap size, 1MiB maximum 

stack size
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The Heap
 New (i.e., dynamically allocated) bytes (objects, arrays, etc.) are 

allocated on the Heap (malloc() in C, new in Java/C++/C#, 
implicit in Python, etc.)


 Can be handled by a memory manager (e.g., the JVM, a library, 
the Python interpreter) but ultimately it is the OS that provides 
dynamic memory allocation


 There is a system call that says “please OS, give me XX more 
bytes”


 At some point you will get an Out Of Memory error if you keep 
dynamically allocating memory


 On my Linux box (not Docker), let’s write a simple C program 
that calls malloc() 10,000 times for 1 byte and look at the 
addresses returned ⚙



The Heap (what we found out)

 When calling malloc() for 1 byte, the space used is actually more 
than 1 byte!


 In our case addresses were 32 bytes apart, so we “wasted" 31 
bytes for each malloc()!!


 Calling malloc(), say,  10,000 times for 1 byte “wastes” memory 
when compared to calling malloc() 1 time for 10,000 bytes


 This is due to the implementation of the OS’s “memory allocator”

 It needs to store meta-data about the chunk of memory allocated 

so that later it knows what to do when free() is called

 It will often allocate memory at addresses that are multiple of 

some small power of 2

 Let’s now strace this program we just wrote and see what the 

“give me more memory!” system call is ⚙



The Runtime Stack
 Each process has in RAM a stack (a last-in-first-out data 

structure) where items can be pushed or popped

 It is used to manage method/procedure/function calls and returns

 On each call, an activation record is pushed onto the stack to do 

all the bookkeeping necessary for placing/returning from the call

 It contains parameters, return address, local variables, saved register 

values

 The code to manage the stack is generated by compilers/

interpreters

 In ICS 312 we learn all the details


 The stack size is limited

 But configurable upon process creation


 Going over that limit is called a Stack Overflow

 Happens, for instance, with a deep (or infinite) recursion



The Kernel Stack
 The code in the kernel uses functions, and therefore it must have 

a stack to call these functions

 But, to save space, the kernel’s stack is very small (16KB!!)

 Therefore, when writing functions in the kernel, these functions 

cannot allocate a lot on the stack

 Not many parameters, not many local variables, no deep call 

sequences, and definitely no recursion


 This is one of the differences between user-level development 
and kernel-level development


 Many difference are due to the lack of standard libraries

 Standard libraries use system calls, which are implemented in the 

kernel, and so kernel code can’t use these convenient libraries

 e.g., you can’t use printf when writing kernel code



Logical Address Space
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 Typical depiction of a process’ address space

 The heap grows toward high addresses

 The stack grows toward low addresses

 When they collide you’ve run out of memory


 This is the logical view of a process’ address 
space (i.e., virtualization of memory)


 We can easily experience this logical view by 
writing a C program that prints text, data, heap 
and stack addresses on Linux ⚙ 


 But this is not at all what things look like in 
physical memory


 Because of “paging”, which we’ll talk about 
much later in the semester


 And because that “free space” (in blue) 
would be a total waste if the program 
doesn’t need additional stack/heap space!



Two Processes / One Program Example
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Process Life Cycle

 Each process goes through a lifecycle

 This term (in computer science) means that:


 There is a finite number of possible states

 There are allowed transitions between some states

 These transitions happen when some event occurs


 Before we look at the current process file 
cycle, let’s go back in time to so-called “single-
tasking OSes”…



Single-Tasking Process 
Lifecycle
 The process lifecycle was very simple:
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Single-Tasking Process 
Lifecycle
 The process lifecycle was very simple:
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Problem: While a process 

is doing I/O, the CPU is 
idle, which is not only 
inconvenient but a waste 



Multi-Tasking (aka Multiprogramming)

 In modern OSes, multiple processes can be 
in RAM at the same time


 Each with its own address space

 While it’s running, a process thinks it’s alone 

on the machine (it doesn’t see anything 
outside of its address space)


 There is a system call to create a new 
process that any process can place (to 
create a “child” process)


 See Homework #2

 When a process terminates, its RAM space 

is reclaimed by the OS


 Therefore, a process can be ready to run 
but not running because another process is 
currently running on the CPU


 The lifecycle needs a new state!
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The Ready State 

 A process can be ready to run but not 
currently running: It’s in the ready state


 It is the job of the OS to select one of the 
ready processes whenever the CPU 
becomes idle

 This is part of what’s called “scheduling”


 This is how the OS virtualizes the CPU, so 
that each process has the illusion it is the 
only one using the CPU


 We have a more complicated lifecycle…
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It’s important that you have this 
diagram in mind


The narrative is straightforward: just 
practice drawing this diagram by 
telling yourself the story, not by 
memorizing it!



Process Control Block
 The OS uses a data structure to keep track of each process

 This structure is called the Process Control Block (PCB) and contains: 


 Process state 


 Process ID (aka PID) 


 User ID 


 Saved Register Values (include PC) 


 CPU-scheduling information (see “Scheduling” Module) 

 Memory-management information (see “Main Memory” and “Virtual Memory” 

modules) 

 Accounting information (amount of hardware resources used so far)

 I/O Status Info (e.g., for open files) 

 … and a lot of other useful things


 Let’s look at Figure 4.5 in OSTEP (for the Educational xv6 kernel)

 Let’s look at the task_struct data structure in /usr/src/linux-
headers-5.15.0-25/include/linux/sched.h (on our Docker 
image)



The Process Table
 The OS has in memory (in the Kernel space) one PCB per process


 A new PCB is created each time a new process is created

 A PCB is destroyed each time a process terminates


 The OS keeps a “list” of PCBs: the Process Table

 Because Kernel size (i.e., its memory footprint) is bounded, so is the 

Process Table 


 Therefore, the Process Table can fill up! 


 If you (or your program) keeps creating new processes, at some point, 
the process creation will fail


 One of the many ways in which a system can become unusable

 Because at that point you can’t even start a new Shell, since the Shell is a 

process! 


 Anybody has heard of the “fork bomb” term? 

 Let’s find out the max number of possible processes on our container… 


 cat /proc/sys/kernel/threads-max



Conclusion

 Processes are running programs

 Multiple processes co-exist in RAM 


 The question of what happens when we run out of 
RAM space will be answered much later in the 
semester... 


 Information about each process is stored in a 
data structure called the PCB


 The OS keeps a Process Table of all the PCBs 

 Onward to the Process API.... 


