
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Processes:
OS Mechanisms

Direct Execution
 Figure 6.1 in OSTEP shows a simple timeline for an OS to run a

program (slightly modified below):

OS Program

Create PCB and add it to the Process Table

Allocate memory for the process

Load the program into memory

Set up the stack with argc/argv

Clear the registers

Starts the fetch-decode-execute (at 1st instruction in main)

Run main()

Return from main

Free memory of the process

Remove PCB from the Process Table (or keep as a zombie)

Direct Execution: Not a Good Idea

 The approach on the previous slides has two big problems

 Problem #1: If the process needs to access hardware resources (e.g.,
to write to disk), then the only option is to give the process full access to
the hardware

 This was the case in the 60’s, but it’s WAY too dangerous
 A bug in a user program could corrupt hardware status, bring the machine

down, overwrite data, ...
 Problem #2: How do we kick a process out of the CPU and give the

CPU to another process?

 We can’t just say “let’s start the fetch-decode-execute cycle of a program and
hope that it doesn’t hog the CPU”

 For that matter, what if a process goes into an infinite loop as a bug?
 This was a problem with Mac OS 9!!

 We need to limit the way in which a process runs on the hardware
 In other words, we need mechanisms for virtualizing the CPU to solve

both problems above

Limited Execution: Restricted
Operations
 The OS cannot just be a “library” that a user program can call

 Because then the program would have complete control over the
system and do dangerous things and/or hog the CPU

 So when my program places a syscall like read(), what
happens must be different from what happens when my
program calls a regular function I implemented, like
compute_stuff()

 This is done by building CPUs that have two kinds of
instructions!

 Unprotected instruction that a program can execute at any time

 Protected (or Privileged) instructions that do “special” things
and that a program can’t just execute in normal operation

User-Mode vs. Kernel-Mode
 All (modern) CPUs support (at least) two modes of

execution:

 The User Mode where protected instructions cannot be
executed

 The Kernel Mode where all instructions can be executed
 User code executes in user mode
 Kernel code executes in kernel mode

 The mode is indicated by a status bit (the mode bit)
in a protected control register in the CPU

 The CPU checks the mode bit before executing a
protected instruction

User-Mode vs. Kernel-Mode
 In the Fetch-Decode-Execute cycle steps are added to

the Decode stage:
 Decode instruction

 If the instruction is protected and the mode bit is not set to
“Kernel mode”, abort and raise a trap (that the OS will answer
by terminating the program saying something like “not
allowed”)

 Otherwise, execute the instruction
 FYI:

 There are actually multiple modes (multiple levels in the
kernel, multiple levels in the CPU)

 MS-DOS had only one mode (because it was designed for the
8086 which had no kernel mode bit)

 Which is very scary now, in hindsight

Which Instructions are Protected?

 The instruction to change the mode bit
 Obviously :)

 Basically all instructions that directly control the hardware
 Halt the CPU
 Update the CPU’s control registers (more later…)
 Change the system clock
 Read/Write to registers of I/O device controllers

 Therefore, all these operations can only happen in Kernel
mode and only kernel code can use them

 Essentially, the kernel is the only trusted software component
that is allowed to interact with hardware components directly

 Which is why we have syscalls to say “please execute to
Kernel code on my behalf”

Syscalls: How do they work?

 The user code runs in user mode
 The kernel code runs in kernel mode
 So the mode bit must change!

 This is exactly why the CPU has a special
“system call” instruction

 This instruction is a trap to which the Kernel must
react
 Remember that the Kernel is basically a big event

handler, and that a trap is an event (caused by a
program’s execution)

The Trap Table
 At boot time, the OS initializes a Trap Table

 On the x86 architecture, it’s called the Interrupt Descriptor Table
 The Trap Table is stored in RAM, and the CPU has a register that

points to it

 For each event type that the CPU could receive, this table indicates
the address in the kernel of the code that should be run to react to
the event

 Whenever an event occurs the CPU can just do:

 Look at the Trap Table in RAM
 Lookup the entry in the Trap Table for the event and find the kernel

handler’s address
 Set the mode bit to “Kernel”
 Jump to the kernel handler and fetch-decode-execute it

 Let’s look at this on a picture…

The Trap Table
 At boot time, the kernel

is loaded into RAM
 The kernel code includes

handlers, i.e., pieces of
code that should execute
to answer particular
events

 In this example, we
consider

 a “keyboard event”
handler

 a “disk I/O event”
handler

 a “syscall event” handler
Kernel in RAM

Code to handle keyboard input

Code to handle disk I/O

Code to handle sys calls

The Trap Table
 At boot time, in RAM a

Trap Table is created as
an array of consecutive
bytes

 Each event type is set to
the address of the first
instruction of the
corresponding kernel
event handler code

 Of course, each event is
described as an integer,
which is simply an index
into the Trap Table, which
is just an array of
addresses

Kernel in RAM

Code to handle keyboard input

Code to handle disk I/O

Code to handle sys calls

Event Handler

Keyboard

Disk

Syscall

The Trap Table
 A special register on

the CPU is initialized
with the address of
the first byte of the
Trap Table

Kernel in RAM

Code to handle keyboard input

Code to handle disk I/O

Code to handle sys calls

Event Handler

Keyboard

Disk

Syscall

CPU
register

The Trap Table
 This is how the

Kernel is able to react
to all event (Is
everything in this
course about
indirection?)

Kernel in RAM

Code to handle keyboard input

Code to handle disk I/O

Code to handle sys calls

Event Handler

Keyboard

Disk

Syscall

CPU
register

The “trap” Instruction
 A CPU has an instruction to trigger the “I want to do a system call” event,

often called the “trap instruction”
 On the x86 architecture the instruction is called int (short for interrupt)
 Nothing to do with an integer!

 The trap instruction does:
 Set the mode bit to “kernel”
 Jump to the “handle system call” kernel code
 Set the mode bit to “user”
 Jump back to user code

 There are many syscalls, but a single syscall handler
 Therefore, the user must specify which syscall to run as a syscall number
 The handler checks that the syscall number if valid, and then jumps to the

corresponding kernel code
 Yes, there is a table that says for each syscall number what

the address in the kernel of the code for that syscall is (/usr/src/linux-
headers-*/include/uapi/asm-generic/unistd.h)

On a Picture

User Code / User Mode (mode bit = 1)

Kernel Code / Kernel Mode (mode bit = 0)

User code
executing

Trap instruction
for syscall

User code
resuming

Kernel code
executing

mode bit set to = 0 mode bit set to 1

Limited Execution: Whole Story

 You write your user program, which calls a standard
library function that places a system call, e.g., write()

 The trap instruction is executed, the CPU sets the mode
bit to kernel, figures out this is a “syscall” event, looks up
the Trap Table, finds out in it the address of the handler for
that event in the kernel code, and jumps to that code

 The handler code looks at the system call number passed
to the trap instruction, looks up its table of syscall, finds
the address of the code for that particular system call, and
jumps to that code

 The syscall code is executed
 The syscall code returns to the system call handler, which

sets the mode bit to “user” and returns to your program

Limited Execution: Restricted Time

 Remember the two problems we identified at the
beginning:

 Problem #1: How do we prevent user programs from
getting full control/access to the hardware?

 Problem #2: How do we kick a process out of the CPU
and give the CPU to another process?

 We’ve just dealt with Problem #1
 Mode bit, trap instruction, sys calls

 Let’s now deal with Problem #2
 The main idea is to switch between processes

It’s all about Regaining Control

 Switching between processes should be simple
 The OS should just decide to stop one process

and start another
 But it’s not so easy: if a process is running on

the CPU, by definition the OS is not running!
 Meaning, Kernel code is not running

 So then how can the OS do anything???

 The question is: How can the OS regain control
of the CPU?

The Cooperative Approach
 From the title, you already know it’s not going to work ;)
 In the cooperative approach, you just assume processes are

nice and willingly give up the CPU frequently
 For instance, each time a process places a syscall, then by

definition Kernel code is running, and then the OS can take
whatever action (like kicking the process off the CPU)

 There could be a yield() syscall to just give up the CPU
 We’ll see that there is something like this for threads!

 The old MacOS 9 is a famous example that used this approach
 Yes, on an old Mac, a while(1){} program will lock up the machine

and you’ll need to reboot!
 The easiest malware ever?

 How can we avoid this?
 Answer: with a timer

The Timer Interrupt
 To deal with non-cooperative processes, whenever the OS starts

the fetch-decode-execute cycle of a process it sets a timer
 When the timer goes off, a trap is generated, so that the CPU will

stop what it’s doing and notify the OS
 The kernel has a handler for this trap (pointed to by an entry in

the Trap Table, as we’ve seen)
 This handler is the way in which the OS regains control

 And can say “you’ve have enough CPU, let me kick you off the CPU
and pick somebody else to run”

 Setting and enabling/disabling the timer are privileged instructions
 Otherwise a user program could set the timer to 10 hours and hog the

CPU
 So now, we have the mechanism to regain control
 Next up: how to switch between processes

Context Switching
 The mechanism to kick a process off the CPU and give the CPU to

another process is called a context switch:
 Save the context of the running process to the PCB in RAM (i.e., all register

values)
 Change its state from Running to Ready
 Restore, from the PCB in RAM, the context of another Ready process (i.e.,

register values)
 Make the state of this process Running
 Restart its fetch-decode-execute cycle

 The context switch code is in assembly (Figure 6.4 in OSTEP)
 It should be as fast as possible because it is pure overhead

 Nothing “useful to users” happens during a context switch
 Nowadays it’s under 1µs

 Context switch is a mechanism, and deciding when to context switch
(i.e., picking timer values) and which Ready process to pick is a policy,
which is called scheduling

Disclaimer about the Next Slide
 The next slide makes simplifying assumptions:

 We assume a single CPU system
 We won’t talk about threads, scheduling, and other concepts

 We’ll see those later, and we want to keep things simple for now
 We assume that we have only two processes in memory
 We also assume that they never to go the Waiting state

(e.g., performing some I/O) and that they never go to the
Terminated state (i.e., they run forever)

 Therefore with the above assumptions: At any given
time, one process is in the Running state and the other
is in the Ready state

Context Switching
Event Time Process

#1
OS Process #2

- 1 Running - Ready
Timer! - Running - Ready

- 2 Ready (Context switch begins) Ready
- 3 Ready Save state in PCB #1 Ready
- 4 Ready - Ready
- 5 Ready Restore state from PCB #2 Ready
- 6 Ready - Ready
- 7 Ready (Context switch ends) Running
- 8 Ready - Running
- 9 Ready - Running
- … … … …
- 30 Ready - Running

Timer! 31 Ready - Running
- 32 Ready (Context switch begins) Ready
- … …

Context Switching
Event Time Process

#1
OS Process #2

- 1 Running - Ready
Timer! - Running - Ready

- 2 Ready (Context switch begins) Ready
- 3 Ready Save state in PCB #1 Ready
- 4 Ready - Ready
- 5 Ready Restore state from PCB #2 Ready
- 6 Ready - Ready
- 7 Ready (Context switch ends) Running
- 8 Ready - Running
- 9 Ready - Running
- … … … …
- 30 Ready - Running

Timer! 31 Ready - Running
- 32 Ready (Context switch begins) Ready
- … …

C
ontext

sw
itching

overhead

Conclusion
 OSTEP makes a good “baby proofing” analogy
 The idea is that you can think of the mechanisms we’ve talked

about as the OS “baby proofing” the CPU
 Make sure processes don’t do anything dangerous (privileged

instructions they’re not allow to execute)
 But they can ask permission for an adult (the kernel) to do

something dangerous on their behalf (via system calls)
 Make sure they don’t hog shared toys (the CPU) too long (via a

timer interrupt)
 Chapter 6 in OSTEP finishes by saying ”now let’s talk about

scheduling”
 But before we get there, let’s talk about IPCs (in this module)
 And then we’ll talk about threads (in the next module)
 And then we’ll talk about scheduling…

