
Henri Casanova (henric@hawaii.edu)

ICS332 
Operating Systems 

Advanced CPU 
Scheduling



CPU Scheduling in the Real World
 The previous set of lecture notes goes over the basics of scheduling 
 The punch line was: use RR with a good time quantum 
 Unfortunately, things are not as simple 
 Let look at 3 more advanced scheduling topics:  

1. Multi-Level Feedback Queue (OSTEP Chapter 8) 
 Approach used in most real-world OSes, including Windows  

2. Multi-Processor Scheduling 
 We’ll only skim the surface here (OSTEP chapter 10 if you want more 

details)  

3. What Linux does 
 We’ll only skim the surface here as Linux scheduling has a long/complex 

history with many different approaches 



The Time Quantum Conundrum

 We don’t want to use too-small a RR time quantum  
 Context-switch overhead would reduce CPU (useful) 

utilization, which ends up harming CPU-intensive jobs  
 But then the time quantum is not small! 
 This means that “interactive” jobs can appear less 

interactive (when there are many jobs)  
 e.g., I type in my text editor, and there is a noticeable lag 

before it responds 
 Interactive jobs typically have just occasional small CPU 

bursts and many I/O bursts  
 We have a conundrum:  

 Interactive jobs want a small time quantum 
 CPU-bound want what a large time quantum 



Multi-Level Feedback Queue (MLFQ)

 You have noted that everything seems to work fine 
on your machine  
 You can run a bunch of apps, and still type in your text 

editor without experiencing lags  
 This means that OSes do something to keep 

interactive jobs happy 
 One such “something” is Multi-Level Feedback 

Queue (MLFQ) 
 The goal: Make sure interactive jobs never get 

stuck in the Ready Queue due to CPU-bound jobs 
 Interactive jobs should get the CPU as soon as they want 

it every time



MLFQ Basic Idea #1: Priorities
 To make sure that interactive jobs are not stuck behind CPU-bound jobs 

the solution is to use priority levels, and use one Round-Robin Ready 
Queue per level
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Figure 8.1: MLFQ Example

stand how job priority changes over time. And that, in a surprise only
to those who are reading a chapter from this book for the first time, is
exactly what we will do next.

8.2 Attempt #1: How To Change Priority

We now must decide how MLFQ is going to change the priority level
of a job (and thus which queue it is on) over the lifetime of a job. To do
this, we must keep in mind our workload: a mix of interactive jobs that
are short-running (and may frequently relinquish the CPU), and some
longer-running “CPU-bound” jobs that need a lot of CPU time but where
response time isn’t important. Here is our first attempt at a priority-
adjustment algorithm:

• Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).

• Rule 4a: If a job uses up an entire time slice while running, its pri-
ority is reduced (i.e., it moves down one queue).

• Rule 4b: If a job gives up the CPU before the time slice is up, it stays
at the same priority level.

Example 1: A Single Long-Running Job

Let’s look at some examples. First, we’ll look at what happens when there
has been a long running job in the system. Figure 8.2 shows what happens
to this job over time in a three-queue scheduler.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES



MLFQ Basic Idea #1: Priorities
 Simple Rules:  

 If Priority(A) > Priority(B) then A runs and B doesn’t 
 A higher-priority job ready to run always preempts a lower-priority job 

 If Priority(A) == Priority(B) then A and B run in Round-Robin  
 Ideally, we want interactive jobs in high-priority queues  
 So that on the “rare” occasion they need the CPU they get it quickly 
 Remember that once a job does I/O it is no longer in any Ready Queue  
 We also want jobs to be demoted/promoted to lower/higher queues when 

they stop/start being less/more interactive  

 Big Question: How do we decide job priorities?? 
 It’s not like programs say “Hey OS, just to let you know, I am about to 

become interactive!”  
 Besides they’d be lying all the time to get more CPU  

 We need a way to automatically detect job interactiveness 



MLFQ Basic Idea #1: Priorities
 When a job first shows up, we put it in the highest-priority queue  

 We don’t know anything about it, we conservatively assume it will be 
interactive  

 We now need a way to demote non-interactive jobs!  
 Key Insight:  

 Interactive jobs do not use their time quanta fully because they always have 
short CPU bursts 

 CPU-intensive, non-interactive jobs use their time quanta fully because they 
always have long CPU bursts 

 The OS has information about whether each job uses its time quantum fully or not! 
 Either a job places an I/O syscall before the “time quantum expired” timer 

goes off (time quantum was not fully used) 
 Either the “time quantum expired” timer goes off and the job is still doing its 

fetch-decode-execute cycle (time quantum was fully used) 

 So now we have a simple strategy: 
 If a job uses its full time quantum, it is demoted!  
 If a job does not use its full time quantum, then it’s not demoted 



Simple 2-job Example
 Say we have an interactive job and a CPU-bound 

job 
 At the beginning both are in the high-priority queue 
 As soon as the CPU-bound job completes its first 

time quantum, it is demoted to a lower-priority queue 
 At that point, the CPU-bound job can only run 

whenever the interactive job is doing I/O 
 The interactive job runs as if it was alone on the 

machine 

 See Figure 8.4 and its description in OSTEP



Problem: Starvation
 A clear problem with what we have so far is that a CPU-bound 

job may never run 
 This can happen if we have too many interactive / I/O-bound jobs 
 Example: 

 A CPU-bound job 
 Two I/O-bound jobs that use 1/2 of their time quantum for each CPU 

burst 
 The two I/O-bound jobs are in perfect synchrony: when one finishes its 

time quantum the other is always ready to start its time quantum 
 In this situation, after its initial demotion, the CPU-bound job will never 

run 
 This is starvation 

 See Figure 8.5 (left side) and its description in OSTEP



Other Problems: Gaming the System

 Gaming the system: 
 A more insidious problem is that a very smart user could game the 

scheduler 
 If I know the time quantum duration, I can have my program do some 

fast, useless I/O operation, right before my time quantum expires 
 As a result, my program never uses its time quantum fully, and remains 

at the highest priority always! 
 Basically I am masquerading as an interactive job 

 Jobs that change behavior 
 Say a job is first CPU-intensive, so it’s demoted to the lowest priority 

queue 
 At some point later it becomes interactive 
 At that point, it will appear very unresponsive to the user 

 Bottom-line: We need to treat CPU-bound jobs a bit better



Solution: Priority Boost
 A simple approach: every S seconds, move all jobs back to the highest 

priority queue, and let them trickle back down 
 This is called a Priority Boost 
 See Figure 8.5 (right side) and its description in OSTEP 
 Note that we haven’t fixed the “gaming the system” problem (see OSTEP 

Section  8.4) 
 By the way, on UNIX-like systems you can be nice (let’s look at the man page) 

 An immediate question: “what’s a good value of S? “ 
 If S is too big, then CPU-bound jobs will be unhappy 
 If S is too small, then interactive jobs may lag 

 Each time we add a parameter to a strategy, we raise the question of 
“what’s a good value?” 

 Some call these “Voodoo constants” because picking good values is a dark art 
 See the Ousterhout’s Law insert in OSTEP



MLFQ Parameters
 We have defined the general MLFQ 

approach 
 In practice we have many “voodoo” 

constants 
 The number of priority levels 
 The time quantum duration for the 

Ready Queue at each priority level 
 The duration S after which all jobs 

experience a priority boost 
 It’s all easy to implement based on a 

configuration, but the question is: 
what’s a good configuration? 

 People have experimented over the 
years and a good rule of thumb is: 
larger time quanta for lower-priority 
ready queues
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it uses the time slice in one long burst or many small ones does not matter.
We thus rewrite Rules 4a and 4b to the following single rule:

• Rule 4: Once a job uses up its time allotment at a given level (re-
gardless of how many times it has given up the CPU), its priority is
reduced (i.e., it moves down one queue).

Let’s look at an example. Figure 8.6 (page 81) shows what happens
when a workload tries to game the scheduler with the old Rules 4a and 4b
(on the left) as well the new anti-gaming Rule 4. Without any protection
from gaming, a process can issue an I/O just before a time slice ends and
thus dominate CPU time. With such protections in place, regardless of
the I/O behavior of the process, it slowly moves down the queues, and
thus cannot gain an unfair share of the CPU.

8.5 Tuning MLFQ And Other Issues

A few other issues arise with MLFQ scheduling. One big question is
how to parameterize such a scheduler. For example, how many queues
should there be? How big should the time slice be per queue? How often
should priority be boosted in order to avoid starvation and account for
changes in behavior? There are no easy answers to these questions, and
thus only some experience with workloads and subsequent tuning of the
scheduler will lead to a satisfactory balance.

For example, most MLFQ variants allow for varying time-slice length
across different queues. The high-priority queues are usually given short
time slices; they are comprised of interactive jobs, after all, and thus
quickly alternating between them makes sense (e.g., 10 or fewer millisec-
onds). The low-priority queues, in contrast, contain long-running jobs
that are CPU-bound; hence, longer time slices work well (e.g., 100s of
ms). Figure 8.7 shows an example in which two long-running jobs run
for 10 ms at the highest queue, 20 in the middle, and 40 at the lowest.
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MLFQ in Real OSes
 The basic MLFQ idea is used in Solaris, FreeBSD (and thus MacOS), 

and Windows  
 The Solaris OS (Sun Microsystems) scheduler is basically what we 

just described 
 A config file describes the queue configurations 
 Raises the question of how often the default values are actually tuned  
 In your career you’ll encounter systems with many configuration parameters, 

and setting these parameters correctly is a challenge and often not done  
 Not letting the number of parameters grow too large when designing a 

system is always a good idea, but not easy 
 In other OSes the basic approach is MLFQ, but there are a bunch of 

added bells and whistles  
 The variant of MLFQ in the FreeBSD OS does some accounting: priority is 

tuned based on how much CPU a job has used 
 Windows uses a mix of MLFQ and other scheduling approaches 



In-Class Exercise
 Consider the following jobs:  

 A: CPU burst time 1ms, I/O burst time 5ms (Disk) 
 B: CPU burst time 4ms, I/O burst time 2ms (NIC) 
 C: CPU burst time ∞ ms  

 At time t = 0, all are in the ready queue (in the A, B, C order), and 
all begin execution with a CPU burst  

 The OS uses a 2-queue MLFQ: 5ms quantum for top queue, 
20ms quantum for bottom queue  

 There is no priority boost  
 Plot the CPU utilization time-line for 34 ms  
 Use letter A / B / C for 1ms of execution of job A / B / C 
 Use letter I for 1ms of idle time  
 Example: AA B III CCC AAAA B II B  
 Same question assuming one priority boost at time 17 



Solution
 A: 1ms / 5ms; B: 4ms / 2ms; C:  ∞ ms 
 Top queue: 5ms; Bottom queue: 20ms

CPU

Disk

NIC

A A’s 1st time quantum, 
which is not fully utilized



Solution
 A: 1ms / 5ms; B: 4ms / 2ms; C:  ∞ ms 
 Top queue: 5ms; Bottom queue: 20ms

CPU

Disk

NIC

ABBBB

 AAAAA

B’s 1st time quantum, 
which is not fully utilized



Solution
 A: 1ms / 5ms; B: 4ms / 2ms; C:  ∞ ms 
 Top queue: 5ms; Bottom queue: 20ms

CPU

Disk

NIC

ABBBBCCCCC

 AAAAA

     BB

C’s 1st time quantum, which 
is fully utilized, and so C is 

demoted to the lower queue



Solution
 A: 1ms / 5ms; B: 4ms / 2ms; C:  ∞ ms 
 Top queue: 5ms; Bottom queue: 20ms

CPU

Disk

NIC

ABBBBCCCCCA

 AAAAA

     BB

A’s 2nd time quantum



Solution
 A: 1ms / 5ms; B: 4ms / 2ms; C:  ∞ ms 
 Top queue: 5ms; Bottom queue: 20ms

CPU

Disk

NIC

ABBBBCCCCCABBBB

 AAAAA     AAAAA

     BB

B’s 2nd time quantum



Solution
 A: 1ms / 5ms; B: 4ms / 2ms; C:  ∞ ms 
 Top queue: 5ms; Bottom queue: 20ms

CPU

Disk

NIC

ABBBBCCCCCABBBBC

 AAAAA     AAAAA

     BB        BB

C’s 2nd time quantum, 
which is only 1ms 

because A is ready and of 
a higher priority!!



Solution
 A: 1ms / 5ms; B: 4ms / 2ms; C:  ∞ ms 
 Top queue: 5ms; Bottom queue: 20ms

CPU

Disk

NIC

ABBBBCCCCCABBBBCA

 AAAAA     AAAAA

     BB        BB

A’s 3rd time quantum



Solution
 A: 1ms / 5ms; B: 4ms / 2ms; C:  ∞ ms 
 Top queue: 5ms; Bottom queue: 20ms

CPU

Disk

NIC

ABBBBCCCCCABBBBCABBBB

 AAAAA     AAAAA AAAAA

     BB        BB

B’s 3rd time quantum



Solution
 A: 1ms / 5ms; B: 4ms / 2ms; C:  ∞ ms 
 Top queue: 5ms; Bottom queue: 20ms

CPU

Disk

NIC

ABBBBCCCCCABBBBCABBBBC

 AAAAA     AAAAA AAAAA

     BB        BB    BB

C’s 3rd time quantum



Solution
 A: 1ms / 5ms; B: 4ms / 2ms; C:  ∞ ms 
 Top queue: 5ms; Bottom queue: 20ms

CPU

Disk

NIC

ABBBBCCCCCABBBBCABBBBCABBBBCABBBBC

 AAAAA     AAAAA AAAAA

     BB        BB    BB

And so on, with a 
repeating pattern forever



Solution
 A: 1ms / 5ms; B: 4ms / 2ms; C:  ∞ ms 
 Top queue: 5ms; Bottom queue: 20ms

CPU

Disk

NIC

ABBBBCCCCCABBBBCABBBBCABBBBCABBBBC

 AAAAA     AAAAA AAAAA

     BB        BB    BB

Note that the time quantum of the Bottom 
queue doesn’t matter in this example as 

job C runs for at most 1ms anyway



Solution (with priority boost)
 A: 1ms / 5ms; B: 4ms / 2ms; C:  ∞ ms 
 Top queue: 5ms; Bottom queue: 20ms

CPU

Disk

NIC

ABBBBCCCCCABBBBCABBBBCCCCCABBBBC..

 AAAAA     AAAAA AAAAA

     BB        BB    BB

Priority Boost 
C is promoted

C is back in 
the top-priority 

queue, and 
thus gets a full 
5ms of CPU!



Outline

1. Multi-Level Feedback Queue (OSTEP Chapter 8) 
 Approach used in many real-world OSes, including 

Windows  

2. Multi-Processor Scheduling 
 We’ll only skim the surface here (OSTEP chapter 10 if 

you want more details)  

3. What Linux does 
 We’ll only skim the surface here as Linux scheduling has 

a long/complex history with many different approaches 



Multi-Processor Scheduling
 All our processors are multi-core  
 Therefore, OSes need to do scheduling across multiple cores 
 You may be thinking: what’s the big deal? 

 Whenever a core becomes idle, put a job on it based on whatever MLFQ scheme  
 If we do this, we may end up with:

CPU 0

CPU 1

CPU 2

CPU 3

A E D C B … repeat …

B A E D C … repeat …

C B A E D … repeat …

D C B A E … repeat …

 Anybody sees a problem with this?



Multi-Processor Scheduling
 All our processors are multi-core  
 Therefore, OSes need to do scheduling across multiple cores 
 You may be thinking: what’s the big deal? 

 Whenever a core becomes idle, put a job on it based on whatever MLFQ scheme  
 If we do this, we may end up with:

CPU 0

CPU 1

CPU 2

CPU 3

A E D C B … repeat …

B A E D C … repeat …

C B A E D … repeat …

D C B A E … repeat …

 Anybody sees a problem with this?
 Having jobs jump around cores makes cache use inefficient!



Multi-core Architectures

 A job runs on Core #1 and has its data in the cache 
 It experiences a lot of cache hits during its execution, because of spatial and temporal 

locality, which is great 
 Then it does some I/O, ends up later in the Ready Queue, and then gets 

scheduled on Core #2 
 At that point, it has none of its data in cache and will get many cache misses, 

which is terrible 
 Worst case: jobs keep bouncing between cores as shown in the previous slide 

 Each time a job starts a time quantum, it’s “lost” all its data in cache
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The first time a program issues this load, the data resides in main mem-
ory, and thus takes a long time to fetch (perhaps in the tens of nanosec-
onds, or even hundreds). The processor, anticipating that the data may be
reused, puts a copy of the loaded data into the CPU cache. If the program
later fetches this same data item again, the CPU first checks for it in the
cache; if it finds it there, the data is fetched much more quickly (say, just
a few nanoseconds), and thus the program runs faster.

Caches are thus based on the notion of locality, of which there are
two kinds: temporal locality and spatial locality. The idea behind tem-
poral locality is that when a piece of data is accessed, it is likely to be
accessed again in the near future; imagine variables or even instructions
themselves being accessed over and over again in a loop. The idea be-
hind spatial locality is that if a program accesses a data item at address
x, it is likely to access data items near x as well; here, think of a program
streaming through an array, or instructions being executed one after the
other. Because locality of these types exist in many programs, hardware
systems can make good guesses about which data to put in a cache and
thus work well.

Now for the tricky part: what happens when you have multiple pro-
cessors in a single system, with a single shared main memory, as we see
in Figure 10.2?

As it turns out, caching with multiple CPUs is much more compli-
cated. Imagine, for example, that a program running on CPU 1 reads
a data item (with value D) at address A; because the data is not in the
cache on CPU 1, the system fetches it from main memory, and gets the
value D. The program then modifies the value at address A, just updat-
ing its cache with the new value D′; writing the data through all the way
to main memory is slow, so the system will (usually) do that later. Then
assume the OS decides to stop running the program and move it to CPU
2. The program then re-reads the value at address A; there is no such data
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Scheduling for Cache Affinity
 Each job has some affinity to some core: the core at which it has 

some/most data in cache 
 Most modern OSes ensure that jobs are scheduled on cores while 

taking affinity into account, whenever possible, for example:

CPU 0

CPU 1

CPU 2

CPU 3

A E

D

C
B

… repeat …

B
A
E

D

C

… repeat …

C
B

A

E

D

… repeat …

D

C
B
A

E … repeat …

 Job E bounces around, but others stay put, which is good for the cache 
 See OSTEP Chapter 10 for more details and fancy solutions (as other 

problems arise)



CPU Affinity in the Linux Kernel

 On our Docker container 
 Let’s look in: /usr/src/linux-
headers-5.15.0-25/include/linux/
sched.h 
 Let’s search for affinity-related functions 

 Let’s look in: /usr/src/linux-
headers-5.15.0-25/include/linux/
cpumask.h 

 We found out that the PCB includes a bit 
mask for all CPUs, which is likely used to 
keep track of current CPU affinity
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1. Multi-Level Feedback Queue (OSTEP Chapter 8) 
 Approach used in many real-world OSes, including 

Windows  

2. Multi-Processor Scheduling 
 We’ll only skim the surface here (OSTEP chapter 10 if 

you want more details)  

3. What Linux does 
 We’ll only skim the surface here as Linux scheduling has 

a long/complex history with many different approaches 



Linux Scheduling
 Linux is an OS for which there has been a lot of scheduling ideas and 

development  
 Linux is typically considered to have had very good schedulers 

 Well-known scheduling algorithms:  
 O(1) Scheduler: multiple queues, bitmap tricks to make quick decisions, 

accounting of CPU usage by each job, akin to MLFQ 
 CFS (Completely Fair Scheduler): stores jobs in a red-black tree instead of 

queues, implements proportional-share approach for fairness (similar to what is 
described in OSTEP Chapter 9)  

 BFS (BF Scheduler): simple algorithm, single queue, also focused on fairness 
(never made it to the mainstream kernel releases)  

 We don’t have time to go into any of those, but A LOT of information is 
available on-line about this hotly debated topic 

 The default has been CFS (since Kernel 2.6 - ca 2011)  
 Simpler/cleaner code than O(1) scheduler, which was the default before but had 

become really hard to maintain / evolve 
 BFS never made it to the mainstream, but is the default in a few distributions 

 If you want to use another algorithm, you have to patch your kernel 



Conclusion

 Scheduling is a very complex topic studied in 
many CS contexts 

 In the context of OSes, there is a long history 
of scheduling ideas and implementations  

 The common theme is to do Round-Robin 
and try to be fair among jobs while allowing 
some jobs to have high-priority (e.g., 
because they are interactive)  

 Real-world OSes all use roughly the same 
ideas with tweaks, bells and whistles


