
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Virtual Memory and
Paging (2)

Paging is great but…
 The previous set of lecture notes ends with all the

benefits of paging
 But there are some challenges / problems
 Two big problems:

 Problem #1: Paging has extra overhead

 Problem #2: Page tables can be very large

 Let’s understand these problems and come up
with solutions

Paging Overhead
 Each address coming out of the CPU is virtual
 Address translation (from virtual to physical) has to be performed for

EVERY address issued by the CPU
 The page table is in RAM and will be accessed very frequently!

 When a new process is dispatched to the CPU, the dispatcher loads a
special register with the address of the beginning of the process’s page
table: the Page Table Base Register (PTBR)

 This makes it fast to switch between page tables at each context switch,
but does not speed up translation

 Because of paging the memory access time is doubled: 1) Access an
entry in the page table; 2) Based on that entry access the physical address

 We just made our RAM twice as slow :(
 And it was already annoyingly slow!

Paging Locality
However!
 Temporal locality: repeated access to the same memory location

 e.g., counter++
 counter is accessed over and over
 the same frame is accessed over and over

 Spatial locality: repeated access to nearby memory locations
 e.g., a[i] = a[i-1] + a[i-2]
 all three array elements are very likely in the same frame
 the same frame is accessed over and over

 Therefore, as a process executes, the address translation requests often
look like:

 Give me the Frame Number for Page 12
 Give me the Frame Number for Page 12 again
 Give me the Frame Number for Page 12 again
 and again, and again...

 We should REMEMBER (i.e., cache) previous translation results!!

The TLB
 Caching of previous translations is done by a hardware component called…
 The Translation Lookaside Buffer (TLB)

 Each entry in the TLB is a <key, value> pair
 You give it a key
 The key is compared in parallel with all stored keys
 If the key is found, then the associated value is returned

The TLB
 Caching of previous translations is done by a hardware component called…
 The Translation Lookaside Buffer (TLB)

 Each entry in the TLB is a <key, value> pair
 You give it a key
 The key is compared in parallel with all stored keys
 If the key is found, then the associated value is returned

CPU

RAM

page table
Page Frame

0 10
1 4
2 23
3 65
4 2
… …
1023 7

Page Offset

Virtual Address

Say the process’ address space
consists of 1024 pages, so that the
page table in RAM has 1024 entries

PTBR

The TLB
 Caching of previous translations is done by a hardware component called…
 The Translation Lookaside Buffer (TLB)

 Each entry in the TLB is a <key, value> pair
 You give it a key
 The key is compared in parallel with all stored keys
 If the key is found, then the associated value is returned

CPU

 TLB

RAM

page table
Page Frame

0 10
1 4
2 23
3 65
4 2
… …
1023 7

Page Frame
1 4
3 65
4 2
1023 7

Page Offset

Virtual Address

The TLB can store a subset of the
page table on the CPU in fast
memory. In this example, 4 entries.

The TLB
 Caching of previous translations is done by a hardware component called…
 The Translation Lookaside Buffer (TLB)

 Each entry in the TLB is a <key, value> pair
 You give it a key
 The key is compared in parallel with all stored keys
 If the key is found, then the associated value is returned

CPU

 TLB

RAM

page table
Page Frame

0 10
1 4
2 23
3 65
4 2
… …
1023 7

Page Frame
1 4
3 65
4 2
1023 7

Page Offset

Virtual Address

=?

=?

=?

=?

When the CPU issues a logical address, the page
number if compared to the key of each entry in the
TLB, in parallel (in hardware, i.e., “zero” time)

The TLB
 Caching of previous translations is done by a hardware component called…
 The Translation Lookaside Buffer (TLB)

 Each entry in the TLB is a <key, value> pair
 You give it a key
 The key is compared in parallel with all stored keys
 If the key is found, then the associated value is returned

CPU

 TLB

RAM

page table
Page Frame

0 10
1 4
2 23
3 65
4 2
… …
1023 7

Page Frame
1 4
3 65
4 2
1023 7

Page Offset

Virtual Address

X

✓

X

X

3

In this example, the page number is 3,
which happens to match one of the
keys in the TLB

The TLB
 Caching of previous translations is done by a hardware component called…
 The Translation Lookaside Buffer (TLB)

 Each entry in the TLB is a <key, value> pair
 You give it a key
 The key is compared in parallel with all stored keys
 If the key is found, then the associated value is returned

CPU

 TLB

RAM

page table
Page Frame

0 10
1 4
2 23
3 65
4 2
… …
1023 7

Page Frame
1 4
3 65
4 2
1023 7

Page Offset

Virtual Address

X

✓

X

X

3

TLB Hit: we found that that page 3 is
in frame 65 without ever looking up the
page table in RAM. We proceed…

The TLB
 Caching of previous translations is done by a hardware component called…
 The Translation Lookaside Buffer (TLB)

 Each entry in the TLB is a <key, value> pair
 You give it a key
 The key is compared in parallel with all stored keys
 If the key is found, then the associated value is returned

CPU

 TLB

RAM

page table
Page Frame

0 10
1 4
2 23
3 65
4 2
… …
1023 7

Page Frame
1 4
3 65
4 2
1023 7

Page Offset

Virtual Address

X

X

X

2

Say now we issue a logical address
with page number 2. This doesn’t
match any entry: it’s a TLB miss

X

The TLB
 Caching of previous translations is done by a hardware component called…
 The Translation Lookaside Buffer (TLB)

 Each entry in the TLB is a <key, value> pair
 You give it a key
 The key is compared in parallel with all stored keys
 If the key is found, then the associated value is returned

CPU

 TLB

RAM

page table
Page Frame

0 10
1 4
2 23
3 65
4 2
… …
1023 7

Page Frame
1 4
3 65
4 2
1023 7

Page Offset

Virtual Address

X

X

X

2

So now we have to look up the page
table in RAM, which is more costly, and
we find out the page number: 23

X

The TLB
 Caching of previous translations is done by a hardware component called…
 The Translation Lookaside Buffer (TLB)

 Each entry in the TLB is a <key, value> pair
 You give it a key
 The key is compared in parallel with all stored keys
 If the key is found, then the associated value is returned

CPU

 TLB

RAM

page table
Page Frame

0 10
1 4
2 23
3 65
4 2
… …
1023 7

Page Frame
2 23
3 65
4 2
1023 7

Page Offset

Virtual Address

X

X

X

2

Now we can update the TLB with the
2→23 translation, overwriting one of
the entries in there, say the 1st one

X

TLB Performance
 Typical TLB characteristics:

 Contains 12 to 4,096 entries
 Performance:

 On a hit: less than 1 clock cycle
 On a miss: 10-100 clock cycles

 Typical miss rate: 0.01 - 1%

 A Replacement Policy must be defined when the TLB
is full:
 Least Recently Used (LRU)? Random?

 Some TLBs allow for some entries to be un-evictable
 e.g., kernel pages

Experiment: How useful is the TLB?

 On the course web site, tlb_stress.c: a piece of code that allocates
an array spanning multiple pages and then writes values at random
locations (runs for some 20 seconds each time)

Table 1

2 50.267

4 50.800

8 51.055

16 51.567

32 51.626

64 51.403

128 51.003

256 49.137

512 46.708

1024 45.137

2048 37.510

4096 20.393

9192 16.185

16384 15.049

32768 14.441

65536 14.137

131072 13.935

M
ill

io
n

m
em

or
y

tr
an

sa
ct

io
ns

 /
se

co
nd

0

15

30

45

60

Number of pages in Array
0 35000 70000 105000 140000

�1

Experiment: How useful is the TLB?

 On the course web site, tlb_stress.c: a piece of code that allocates
an array spanning multiple pages and then writes values at random
locations (runs for some 20 seconds each time)

Table 1

2 50.267

4 50.800

8 51.055

16 51.567

32 51.626

64 51.403

128 51.003

256 49.137

512 46.708

1024 45.137

2048 37.510

4096 20.393

9192 16.185

16384 15.049

32768 14.441

65536 14.137

131072 13.935

M
ill

io
n

m
em

or
y

tr
an

sa
ct

io
ns

 /
se

co
nd

0

15

30

45

60

Number of pages in Array
0 35000 70000 105000 140000

�1

Uses the
TLB 100%
of the time Uses the

TLB 0% of
the time

The TLB and Context-Switches
 What happens with the TLB on a context-switch?
 Wipe the TLB clean?

 VPN 7 of process A is not the same in the same frame as
VPN 7 of process B

 Called a “TLB flush”
 But perhaps unnecessary aggressive (the two processes

could happily share the TLB)
 So your machine doesn’t do TLB flushes

 ASIDs: Address-Space IDentifiers
 Each TLB entry is annotated with a process identifier
 The TLB can contain entries associated to multiple processes
 Each lookup attempts to match entry ASIDs with the ASID of

the current process (and if mismatch then it’s a TLB miss)

One down, one to go…

 Problem #1: Paging has extra overhead
 Solution: Use a TLB

 Only works because our programs have locality
“naturally”

 which is why caches work, and the TLB is just
one kind of cache

 Problem #2: Page tables can be very large
 Let’s look at this one now...

Page Table Structure

 We’ve shown page tables like this:

✓
✓
✓
✓
x
x
x
x

0
1
2
3
4
5
6
7

1
4
3
7
xx
xx
xx
xx

Page Frame Valid

 But once again, this is not quite right…

Page Table Entries
 One thing we haven’t talked about yet: how many bits are needed for a

page table entry?
 I’ve shown the page table as just a table with numbers in it (and the valid bit)
 But the page table consumes space in RAM

 Let us consider a system with 32-bit physical addresses, i.e., a 4GiB RAM
 The n-th entry in the page table is:

 The physical frame number
 A few bits (for now we’ve seen the valid bit, but there are other things - stay

tuned)
 (The page number is just the index of the entry in the array of entries - stay tuned)

 Let us assume a page/frame size of 4 KiB = 212 bytes
 We have 232/212 = 220 frames in RAM
 So the frame number can be encoded on 20 bits
 So a page table entry is 20 bits for the frame number, and then extra bits

for “other stuff”
 Let’s say that 32 bits = 4 bytes are used (which is typical for a 32-bit

architecture)

Page Table Entries

4KiB

4KiB

4KiB

PTBR

entry

entry

entry

. .
 .

. .

4 bytes

Pa
ge

 T
ab

le

A Note on Page Table Structure
 The page table is just an array of entries

 The entry for page 0 is the first element of the array
 The entry for page 1 is the second element of the array
 The entry for page i is the i-th element of the array

 So when we say “lookup an entry” we don’t mean a search
 Looking up the entry for page i means: PTBR + i × entry size

 For instance:
 The PTBR contains address 0xAAAA0000
 The page table entry size is 4-bytes
 I want to “lookup” the entry for page 10
 The entry for that page is at address 0xAAAA0028

 (i.e., PTBR + 4 × 10)
 We get the 4 bytes at that address
 These bytes are: the frame number, the valid bit, other useful bits

 Let’s see an example that shows addresses…

A Process in RAM

CPU

RAM

page #0

page #2

page #1

0x001F1000

0x23440000

0x36FAD000

Let’s say we have a
process with three
pages in RAM

A Process in RAM

CPU

RAM

page
table

page #0

page #2

page #1

0x1212C000

0x001F1000

0x23440000

0x36FAD000

In RAM, somewhere,
the process’ page
table is located

A Process in RAM

CPU

PTBR

0x1212C000

RAM

page
table

page #0

page #2

page #1

0x1212C000

0x001F1000

0x23440000

0x36FAD000

When the process was
scheduled, the PTBR
register was set to the
address of the first entry
in the page table

A Process in RAM

CPU

PTBR

0x1212C000

RAM

page
table

page #0

page #2

page #1

0x1212C000

0x001F1000

0x23440000

0x36FAD000

001F1000 1
36FAD000 1
23440000 1
xxxxxxxx 0
xxxxxxxx 0
. . .

0x1212C000

0x1212C004

0x1212C008

0x1212C00C

0x1212C00E

.

Page Table Size
 So we have page table entries that are each

4 bytes
 Let’s consider a process with a 4GiB

address space
 This process has 232/212 = 220 pages

 Because the page size is 212 bytes
 The process’ page table thus has 220 entries
 Therefore, the page table takes up 220 × 22

= 222 bytes
 which is 4 MiB

 So we need 4 MiB of contiguous RAM
space to store the page table

Page Table Size
 So we have page table entries that are each

4 bytes
 Let’s consider a process with a 4GiB

address space
 This process has 232/212 = 220 pages

 Because the page size is 212 bytes
 The process’ page table thus has 220 entries
 Therefore, the page table takes up 220 × 22

= 222 bytes
 which is 4 MiB

 So we need 4 MiB of contiguous RAM
space to store the page table

 We need 4 MiB of contiguous RAM space!!!!

page
table

(1024x
bigger than

a page!)

page #0

page #2

page #1

We have a Huge Problem
 We use paging to avoid large contiguous slabs of RAM
 To implement paging we use page tables
 But page tables are large contiguous slabs of RAM
 Sooooooo… to avoid big slabs to RAM we need big

slabs of RAM 😱

We have a Huge Problem
 We use paging to avoid large contiguous slabs of RAM
 To implement paging we use page tables
 But page tables are large contiguous slabs of RAM
 Sooooooo… to avoid big slabs to RAM we need big

slabs of RAM 😱

Splitting the Page into Pages!
 What do we do when we have big slabs or RAM?
 We split them into pages!
 So the (large) page table is stored in multiple, possible non-

contiguous pages
 The main questions: how many page table entries can fit in a

page?
 In our example, a page is 4KiB and an entry is 4 bytes
 So a page can contain 210 (1,024) entries
 In the previous slide we said that our page table needs to have

220 entries
 Therefore, we need 220/210 = 210 pages of page table entries

 That’s right: “page table pages”

 Let’s see this on a picture...

Page Table Pages 4KiB4KiB

4KiB

entry

entry

entry

. .

One page
with 210
entries

. . .

210 pages of
the process’

address space

Page Table Pages 4KiB4KiB

4KiB

entry

entry

entry

. .

. . .

4KiB4KiB

4KiB

entry

entry

entry
. .

. . .

. .
 .

. 210 pages that each contain 210 entries
for a total of 210 x 210 = 220 pages in

the process’ address space

Page Table Pages 4KiB4KiB

4KiB

entry

entry

entry

. .

. . .

4KiB4KiB

4KiB

entry

entry

entry
. .

. . .

. .
 .

. entry

entry

entry

. .

One page
with 210
entries

Page Table Pages 4KiB4KiB

4KiB

entry

entry

entry

. .

. . .

4KiB4KiB

4KiB

entry

entry

entry
. .

. . .

. .
 .

. entry

entry

entry

. .

One page
with 210
entries

Each entry
points to a
page table

page

Page Table Pages 4KiB4KiB

4KiB

entry

entry

entry

. .

. . .

4KiB4KiB

4KiB

entry

entry

entry
. .

. . .

. .
 .

. entry

entry

entry

. .

The PTBR points to
the page that contains

entries that point to
page table pages, that

contain entries to
actual pages!

PTBR

Page Table Pages 4KiB4KiB

4KiB

entry

entry

entry

. .

. . .

4KiB4KiB

4KiB

entry

entry

entry
. .

. . .

. .
 .

. entry

entry

entry

. .

PTBR

OUTER page table

INNER page table

Page Table Pages 4KiB4KiB

4KiB

entry

entry

entry

. .

. . .

4KiB4KiB

4KiB

entry

entry

entry
. .

. . .

. .
 .

. entry

entry

entry

. .

PTBR

OUTER page table

INNER page table

Question: How do
we find a page
based on an

address?

Page Table Pages
 In practice, an

inner page
table page is
not allocated
until its needed

Page Table Pages 4KiB
entry

entry

First page of the
process’ address
space is allocated

✓

✓
 In practice, an

inner page
table page is
not allocated
until its needed

Page Table Pages 4KiB
entry

entry

Second page of the
process’ address
space is allocated

✓

✓

4KiB

entry ✓ In practice, an
inner page
table page is
not allocated
until its needed

Page Table Pages 4KiB
entry

entry

210-th page of the
process’ address
space is allocated

✓

✓

4KiB

entry ✓

4KiB

entry ✓

 In practice, an
inner page
table page is
not allocated
until its needed

. . .

Page Table Pages 4KiB
entry

entry

(210 +1)-th page of the
process’ address space is
allocated, and so-on…

✓

✓

4KiB

entry ✓

4KiB

entry ✓

4KiB

entry ✓
entry ✓

 In practice, an
inner page
table page is
not allocated
until its needed

. . .

Hierarchical Page Tables
 The picture on the previous slides is a hierarchical page table
 Given a 32-bit virtual address we split it as follows:

 The first 10 address bits: to pick one of the 210 entries in the outer page
table should we use to find an inner page table page

 The next 10 address bits: to pick one the 210 entries in the inner page
table page should we use to find an address space page

 The next 12 address the offset in that page

 This works perfectly, in this example, because a page contains 210
entries and 212 bytes

10-bit index into
outer page table

10-bit index into
inner page table

12-bit offset
in the page

Hierarchical Page Tables: Address Translation

 (Note: [@] means ”Contents at address @”)
 Assume that a page table entry is 4 bytes
 Address of the outer page table: PTBR
 Address of the relevant outer page table entry: PTBR + 4 × p1
 Address of the relevant page table page: [PTBR + 4 × p1]
 Address of the relevant entry therein: [PTBR + 4 × p1] + 4 × p2
 Address of the page: [[PTBR+4×p1]+4×p2]
 Physical address: [[PTBR + 4 × p1] + 4 × p2] + offset

(See OSTEP Section 20.3)

p1 p2 Offset

In-class Exercise
 Page size: 32 KiB
 Logical addresses: 39 bits
 Page table entry size: 8 bytes

 Using 2-level (aka hierarchical) paging, how is a logical
address split into 3 outer page, inner page, and offset
(denoted p1, p2, offset)?

 Typical approach:
 How many bits for the offset?
 How many page table entries can fit in a page? (gives us p2)
 Then compute p1 as 39 - p2 - offset

In-class Exercise (Solution)
 Page size: 32 KiB
 Logical addresses: 39 bits
 Page table entry size: 8 bytes
 Using 2-level paging, how is a logical address split into 3 outer

page, inner page, and offset (denoted p1, p2, offset)?

 There are 25 × 210 = 215 bytes in a page, offset = 15
 We can have up to 239−15 = 224 pages in the address space
 We have 215/23 = 212 page table entries in a page
 Therefore an inner page table page points to 212 pages: p2 = 12
 Therefore, p1 = 39 - p2 - offset = 39 - 12 - 15 = 12
 This is yet another “lucky” case in which everything fits perfectly

(because the inner page table has exactly 212 entries)

Another In-Class Exercise

 Page size: 64 KiB
 Logical addresses: 41 bits
 Page table entry size: 4 bytes

 Using 2-level paging, how is a logical
address split into 3 outer page, inner page,
and offset (denoted p1, p2, offset)?

 What fraction of the outer page table is
utilized?

Another In-Class Exercise
 Page size: 64 KiB
 Logical addresses: 41 bits
 Page table entry size: 4 bytes
 Using 2-level paging, how is a logical address split into 3 outer

page, inner page, and offset (denoted p1, p2, offset)?
 What fraction of the outer page table is utilized?

 offset = 16 bits (because 216 bytes in a page)
 An inner page table page points to 216/22 = 214 pages
 Therefore, p2 = 14
 And p1 = 41 - 14 - 16 = 11
 The outer page table page thus needs to hold 211 entries
 But it could hold up to 214 entries
 Therefore, only 211/214 = 1/8 = 12.5% of it are used!

Hierarchical Page Tables are it then?

 For 64-bit addresses, with 2-level paging, we are still in trouble
though...

 4 KiB page size, 4-byte page table entry
 Assume 64-bit virtual addresses
 One outer page can address 212/4 = 212/22 = 210 inner pages
 Therefore: 64 - 10 - 12 = 42 bits to address all outer pages
 The outer page size must be: 242×4=16×240 =16 TiB!
 So we need an extra level: 32 (second outer page) + 10 + 10 + 12
 But the second outer page is still 232 × 8 = 32 GiB and we now have three

indirections
 Conclusion: Hierarchical page tables become memory hogs for

large address spaces with small pages
 In practice: Virtual addresses are not 64-bit (cat /proc/
cpuinfo) but more like 48-bit

 In practice: 4 levels are used

Isn’t this Sloooooow?
 With 4 levels, the page-to-frame translation is pretty

slow
 It requires 4 memory accesses (outer, inner #1,

inner #2, inner #3) to follow the chain of indirections
 Plus some multiplications and additions

 So yes, it’s more expensive, but we don’t really
care… anybody sees why?

Isn’t this Sloooooow?
 With 4 levels, the page-to-frame translation is pretty

slow
 It requires 4 memory accesses (outer, inner #1,

inner #2, inner #3) to follow the chain of indirections
 Plus some multiplications and additions

 So yes, it’s more expensive, but we don’t really
care… anybody sees why?

 Because we have a TLB! So we don’t perform the
translation very often because all our programs
have locality!

Hashed Page Tables

 A completely different idea:
 Pick a maximum (desirable) size for the page

table (say N)
 Create a hash function that associates any VPN to

an integer of 0..N-1
 Structure the page table as a hash table using the

hash function (each entry in 0..N-1 is a list of PFN)

 This is interesting but not really done in
practice

Inverted Page Tables
 Yet another idea:

 One table for all processes
 One entry per physical memory frame
 Each entry is: ASID + logical page number
 CPU issues addresses like: PID + VPN + offset
 And page table contains entries like (PID, p) to PFN
 Searching for (PID, p) is expensive

 You can’t have both great space- and time-complexity :)
 And need for a mechanism to implement shared memory

 Was used in: PowerPC, UltraSPARC, IA-64 (Itanium)
– Discontinued

Conclusion

 Paging is a good idea, but it has its problems
 Problem #1: Address translation is slow

 Solution: Use a TLB
 Problem #2: The Page Table shouldn’t be

contiguous
 Solution: Use a hierarchical structure
 The hierarchical structure makes translation slower,

but we don’t care because we have a TLB anyway!
 We still have one big question: What happens

when a process needs a new page, and there is
no free frame???

