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Paging is great but…
 The previous set of lecture notes ends with all the 

benefits of paging

 But there are some challenges / problems 

 Two big problems: 

 Problem #1: Paging has extra overhead 

 Problem #2: Page tables can be very large 

 Let’s understand these problems and come up 
with solutions 



Paging Overhead
 Each address coming out of the CPU is virtual

 Address translation (from virtual to physical) has to be performed for 

EVERY address issued by the CPU

 The page table is in RAM and will be accessed very frequently! 


 When a new process is dispatched to the CPU, the dispatcher loads a 
special register with the address of the beginning of the process’s page 
table: the Page Table Base Register (PTBR) 


 This makes it fast to switch between page tables at each context switch, 
but does not speed up translation 


 Because of paging the memory access time is doubled: 1) Access an 
entry in the page table; 2) Based on that entry access the physical address


 We just made our RAM twice as slow :( 

 And it was already annoyingly slow! 



Paging Locality
However! 

 Temporal locality: repeated access to the same memory location 


 e.g., counter++ 

 counter is accessed over and over

 the same frame is accessed over and over 


 Spatial locality: repeated access to nearby memory locations

 e.g., a[i] = a[i-1] + a[i-2] 

 all three array elements are very likely in the same frame

 the same frame is accessed over and over 


 Therefore, as a process executes, the address translation requests often 
look like: 


 Give me the Frame Number for Page 12

 Give me the Frame Number for Page 12 again

 Give me the Frame Number for Page 12 again 

 and again, and again... 


 We should REMEMBER (i.e., cache) previous translation results!! 



The TLB
 Caching of previous translations is done by a hardware component called…

 The Translation Lookaside Buffer (TLB) 


 Each entry in the TLB is a <key, value> pair

 You give it a key

 The key is compared in parallel with all stored keys

 If the key is found, then the associated value is returned 



The TLB
 Caching of previous translations is done by a hardware component called…

 The Translation Lookaside Buffer (TLB) 


 Each entry in the TLB is a <key, value> pair

 You give it a key

 The key is compared in parallel with all stored keys

 If the key is found, then the associated value is returned 

CPU


                               

RAM


page table
Page Frame

0 10
1 4
2 23
3 65
4 2
… …
1023 7

Page Offset

Virtual Address

Say the process’ address space 
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The TLB
 Caching of previous translations is done by a hardware component called…

 The Translation Lookaside Buffer (TLB) 


 Each entry in the TLB is a <key, value> pair
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The TLB can store a subset of the 
page table on the CPU in fast 
memory. In this example, 4 entries.



The TLB
 Caching of previous translations is done by a hardware component called…

 The Translation Lookaside Buffer (TLB) 


 Each entry in the TLB is a <key, value> pair

 You give it a key

 The key is compared in parallel with all stored keys
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When the CPU issues a logical address, the page 
number if compared to the key of each entry in the 
TLB, in parallel (in hardware, i.e., “zero” time)



The TLB
 Caching of previous translations is done by a hardware component called…
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In this example, the page number is 3, 
which happens to match one of the 
keys in the TLB



The TLB
 Caching of previous translations is done by a hardware component called…

 The Translation Lookaside Buffer (TLB) 


 Each entry in the TLB is a <key, value> pair

 You give it a key

 The key is compared in parallel with all stored keys
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TLB Hit: we found that that page 3 is 
in frame 65 without ever looking up the 
page table in RAM. We proceed…



The TLB
 Caching of previous translations is done by a hardware component called…
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Say now we issue a logical address 
with page number 2. This doesn’t 
match any entry: it’s a TLB miss

X



The TLB
 Caching of previous translations is done by a hardware component called…

 The Translation Lookaside Buffer (TLB) 


 Each entry in the TLB is a <key, value> pair

 You give it a key

 The key is compared in parallel with all stored keys
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So now we have to look up the page 
table in RAM, which is more costly, and 
we find out the page number: 23

X



The TLB
 Caching of previous translations is done by a hardware component called…

 The Translation Lookaside Buffer (TLB) 


 Each entry in the TLB is a <key, value> pair

 You give it a key

 The key is compared in parallel with all stored keys

 If the key is found, then the associated value is returned 
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Now we can update the TLB with the 
2→23 translation, overwriting one of 
the entries in there, say the 1st one

X



TLB Performance
 Typical TLB characteristics: 


 Contains 12 to 4,096 entries

 Performance: 


 On a hit: less than 1 clock cycle

 On a miss: 10-100 clock cycles 


 Typical miss rate: 0.01 - 1% 


 A Replacement Policy must be defined when the TLB 
is full:

 Least Recently Used (LRU)? Random? 


 Some TLBs allow for some entries to be un-evictable 

 e.g., kernel pages 



Experiment: How useful is the TLB?

 On the course web site, tlb_stress.c: a piece of code that allocates 
an array spanning multiple pages and then writes values at random 
locations (runs for some 20 seconds each time) 
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The TLB and Context-Switches
 What happens with the TLB on a context-switch?

 Wipe the TLB clean? 


 VPN 7 of process A is not the same in the same frame as 
VPN 7 of process B


 Called a “TLB flush”

 But perhaps unnecessary aggressive (the two processes 

could happily share the TLB) 

 So your machine doesn’t do TLB flushes 


 ASIDs: Address-Space IDentifiers

 Each TLB entry is annotated with a process identifier 

 The TLB can contain entries associated to multiple processes

 Each lookup attempts to match entry ASIDs with the ASID of 

the current process (and if mismatch then it’s a TLB miss) 



One down, one to go…

 Problem #1: Paging has extra overhead

 Solution: Use a TLB 


 Only works because our programs have locality 
“naturally”


 which is why caches work, and the TLB is just 
one kind of cache 


 Problem #2: Page tables can be very large

 Let’s look at this one now... 



Page Table Structure

 We’ve shown page tables like this:

✓

✓

✓

✓

x

x

x

x

0

1

2

3

4

5

6

7


1

4

3

7

xx

xx

xx

xx

Page Frame Valid

 But once again, this is not quite right…



Page Table Entries
 One thing we haven’t talked about yet: how many bits are needed for a 

page table entry? 

 I’ve shown the page table as just a table with numbers in it (and the valid bit)

 But the page table consumes space in RAM 


 Let us consider a system with 32-bit physical addresses, i.e., a 4GiB RAM

 The n-th entry in the page table is: 


 The physical frame number

 A few bits (for now we’ve seen the valid bit, but there are other things - stay 

tuned) 

 (The page number is just the index of the entry in the array of entries - stay tuned)


 Let us assume a page/frame size of 4 KiB = 212 bytes 

 We have 232/212 = 220 frames in RAM 

 So the frame number can be encoded on 20 bits 

 So a page table entry is 20 bits for the frame number, and then extra bits 

for “other stuff”

 Let’s say that 32 bits = 4 bytes are used (which is typical for a 32-bit 

architecture) 



Page Table Entries
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A Note on Page Table Structure
 The page table is just an array of entries


 The entry for page 0 is the first element of the array

 The entry for page 1 is the second element of the array

 The entry for page i is the i-th element of the array 


 So when we say “lookup an entry” we don’t mean a search

 Looking up the entry for page i means: PTBR + i × entry size 


 For instance: 

 The PTBR contains address 0xAAAA0000

 The page table entry size is 4-bytes 

 I want to “lookup” the entry for page 10

 The entry for that page is at address 0xAAAA0028 


 (i.e., PTBR + 4 × 10)

 We get the 4 bytes at that address 

 These bytes are: the frame number, the valid bit, other useful bits


 Let’s see an example that shows addresses…



A Process in RAM

CPU


                               

RAM

page #0

page #2

page #1

0x001F1000

0x23440000

0x36FAD000

Let’s say we have a 
process with three 
pages in RAM
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In RAM, somewhere, 
the process’ page 
table is located
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When the process was 
scheduled, the PTBR 
register was set to the 
address of the first entry 
in the page table



A Process in RAM
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. . . . . . . 



Page Table Size
 So we have page table entries that are each 

4 bytes 

 Let’s consider a process with a 4GiB 

address space

 This process has 232/212 = 220 pages 


 Because the page size is 212 bytes

 The process’ page table thus has 220 entries

 Therefore, the page table takes up 220 × 22 

= 222 bytes 

 which is 4 MiB 


 So we need 4 MiB of contiguous RAM 
space to store the page table 



Page Table Size
 So we have page table entries that are each 

4 bytes 

 Let’s consider a process with a 4GiB 

address space 

 This process has 232/212 = 220 pages 


 Because the page size is 212 bytes

 The process’ page table thus has 220 entries
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= 222 bytes 
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space to store the page table 


 We need 4 MiB of contiguous RAM space!!!! 
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We have a Huge Problem
 We use paging to avoid large contiguous slabs of RAM

 To implement paging we use page tables

 But page tables are large contiguous slabs of RAM 

 Sooooooo… to avoid big slabs to RAM we need big 

slabs of RAM 😱



We have a Huge Problem
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 To implement paging we use page tables

 But page tables are large contiguous slabs of RAM 
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Splitting the Page into Pages!
 What do we do when we have big slabs or RAM?

 We split them into pages! 

 So the (large) page table is stored in multiple, possible non-

contiguous pages 

 The main questions: how many page table entries can fit in a 

page? 

 In our example, a page is 4KiB and an entry is 4 bytes 

 So a page can contain 210 (1,024) entries 

 In the previous slide we said that our page table needs to have 

220 entries 

 Therefore, we need 220/210 = 210 pages of page table entries


 That’s right: “page table pages” 


 Let’s see this on a picture... 
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entries that point to 
page table pages, that 

contain entries to 
actual pages!
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Question: How do 
we find a page 
based on an 

address?



Page Table Pages
 In practice, an 

inner page 
table page is 
not allocated 
until its needed
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Page Table Pages 4KiB
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Page Table Pages 4KiB
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Page Table Pages 4KiB
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Hierarchical Page Tables
 The picture on the previous slides is a hierarchical page table

 Given a 32-bit virtual address we split it as follows: 

 The first 10 address bits: to pick one of the 210 entries in the outer page 
table should we use to find an inner page table page 


 The next 10 address bits: to pick one the 210 entries in the inner page 
table page should we use to find an address space page 


 The next 12 address the offset in that page


 This works perfectly, in this example, because a page contains 210 
entries and 212 bytes 

10-bit index into 

outer page table

10-bit index into 

inner page table

12-bit offset

in the page



Hierarchical Page Tables: Address Translation

 (Note: [@] means ”Contents at address @”)

 Assume that a page table entry is 4 bytes

 Address of the outer page table: PTBR

 Address of the relevant outer page table entry: PTBR + 4 × p1

 Address of the relevant page table page: [PTBR + 4 × p1]

 Address of the relevant entry therein: [PTBR + 4 × p1] + 4 × p2

 Address of the page: [[PTBR+4×p1]+4×p2]

 Physical address: [[PTBR + 4 × p1] + 4 × p2] + offset 


(See OSTEP Section 20.3)

p1 p2 Offset



In-class Exercise
 Page size: 32 KiB

 Logical addresses: 39 bits

 Page table entry size: 8 bytes 


 Using 2-level (aka hierarchical) paging, how is a logical 
address split into 3 outer page, inner page, and offset 
(denoted p1, p2, offset)? 


 Typical approach: 

 How many bits for the offset?

 How many page table entries can fit in a page? (gives us p2)

 Then compute p1 as 39 - p2 - offset 



In-class Exercise (Solution)
 Page size: 32 KiB

 Logical addresses: 39 bits

 Page table entry size: 8 bytes 

 Using 2-level paging, how is a logical address split into 3 outer 

page, inner page, and offset (denoted p1, p2, offset)? 


 There are 25 × 210 = 215 bytes in a page, offset = 15

 We can have up to 239−15 = 224 pages in the address space

 We have 215/23 = 212 page table entries in a page

 Therefore an inner page table page points to 212 pages: p2 = 12

 Therefore, p1 = 39 - p2 - offset = 39 - 12 - 15 = 12

 This is yet another “lucky” case in which everything fits perfectly 

(because the inner page table has exactly 212 entries) 



Another In-Class Exercise

 Page size: 64 KiB

 Logical addresses: 41 bits

 Page table entry size: 4 bytes 


 Using 2-level paging, how is a logical 
address split into 3 outer page, inner page, 
and offset (denoted p1, p2, offset)? 


 What fraction of the outer page table is 
utilized? 



Another In-Class Exercise
 Page size: 64 KiB

 Logical addresses: 41 bits

 Page table entry size: 4 bytes 

 Using 2-level paging, how is a logical address split into 3 outer 

page, inner page, and offset (denoted p1, p2, offset)? 

 What fraction of the outer page table is utilized? 


 offset = 16 bits (because 216 bytes in a page)

 An inner page table page points to 216/22 = 214 pages

 Therefore, p2 = 14

 And p1 = 41 - 14 - 16 = 11

 The outer page table page thus needs to hold 211 entries

 But it could hold up to 214 entries

 Therefore, only 211/214 = 1/8 = 12.5% of it are used! 



Hierarchical Page Tables are it then? 


 For 64-bit addresses, with 2-level paging, we are still in trouble 
though... 


 4 KiB page size, 4-byte page table entry 

 Assume 64-bit virtual addresses 

 One outer page can address 212/4 = 212/22 = 210 inner pages 

 Therefore: 64 - 10 - 12 = 42 bits to address all outer pages 

 The outer page size must be: 242×4=16×240 =16 TiB! 

 So we need an extra level: 32 (second outer page) + 10 + 10 + 12 

 But the second outer page is still 232 × 8 = 32 GiB and we now have three 

indirections 

 Conclusion: Hierarchical page tables become memory hogs for 

large address spaces with small pages 

 In practice: Virtual addresses are not 64-bit (cat /proc/
cpuinfo) but more like 48-bit 


 In practice: 4 levels are used 



Isn’t this Sloooooow?
 With 4 levels, the page-to-frame translation is pretty 

slow

 It requires 4 memory accesses (outer, inner #1, 

inner #2, inner #3) to follow the chain of indirections

 Plus some multiplications and additions


 So yes, it’s more expensive, but we don’t really 
care… anybody sees why?



Isn’t this Sloooooow?
 With 4 levels, the page-to-frame translation is pretty 

slow

 It requires 4 memory accesses (outer, inner #1, 

inner #2, inner #3) to follow the chain of indirections

 Plus some multiplications and additions


 So yes, it’s more expensive, but we don’t really 
care… anybody sees why?


 Because we have a TLB! So we don’t perform the 
translation very often because all our programs 
have locality!



Hashed Page Tables

 A completely different idea:

 Pick a maximum (desirable) size for the page 

table (say N) 

 Create a hash function that associates any VPN to 

an integer of 0..N-1 

 Structure the page table as a hash table using the 

hash function (each entry in 0..N-1 is a list of PFN)


 This is interesting but not really done in 
practice 



Inverted Page Tables
 Yet another idea:


 One table for all processes

 One entry per physical memory frame

 Each entry is: ASID + logical page number 

 CPU issues addresses like: PID + VPN + offset

 And page table contains entries like (PID, p) to PFN

 Searching for (PID, p) is expensive


 You can’t have both great space- and time-complexity :)

 And need for a mechanism to implement shared memory 


 Was used in: PowerPC, UltraSPARC, IA-64 (Itanium) 
– Discontinued



Conclusion

 Paging is a good idea, but it has its problems

 Problem #1: Address translation is slow 


 Solution: Use a TLB 

 Problem #2: The Page Table shouldn’t be 

contiguous 

 Solution: Use a hierarchical structure

 The hierarchical structure makes translation slower, 

but we don’t care because we have a TLB anyway!

 We still have one big question: What happens 

when a process needs a new page, and there is 
no free frame??? 


