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Paging is great but…
 The previous set of lecture notes ends with all the 

benefits of paging 
 But there are some challenges / problems  
 Two big problems: 

 Problem #1: Paging has extra overhead 

 Problem #2: Page tables can be very large 

 Let’s understand these problems and come up 
with solutions 



Paging Overhead
 Each address coming out of the CPU is virtual 
 Address translation (from virtual to physical) has to be performed for 

EVERY address issued by the CPU 
 The page table is in RAM and will be accessed very frequently!  

 When a new process is dispatched to the CPU, the dispatcher loads a 
special register with the address of the beginning of the process’s page 
table: the Page Table Base Register (PTBR)  

 This makes it fast to switch between page tables at each context switch, 
but does not speed up translation  

 Because of paging the memory access time is doubled: 1) Access an 
entry in the page table; 2) Based on that entry access the physical address 

 We just made our RAM twice as slow :(  
 And it was already annoyingly slow! 



Paging Locality
However!  
 Temporal locality: repeated access to the same memory location  

 e.g., counter++  
 counter is accessed over and over 
 the same frame is accessed over and over  

 Spatial locality: repeated access to nearby memory locations 
 e.g., a[i] = a[i-1] + a[i-2]  
 all three array elements are very likely in the same frame 
 the same frame is accessed over and over  

 Therefore, as a process executes, the address translation requests often 
look like:  

 Give me the Frame Number for Page 12 
 Give me the Frame Number for Page 12 again 
 Give me the Frame Number for Page 12 again  
 and again, and again...  

 We should REMEMBER (i.e., cache) previous translation results!! 



The TLB
 Caching of previous translations is done by a hardware component called… 
 The Translation Lookaside Buffer (TLB)  

 Each entry in the TLB is a <key, value> pair 
 You give it a key 
 The key is compared in parallel with all stored keys 
 If the key is found, then the associated value is returned 
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consists of 1024 pages, so that the 
page table in RAM has 1024 entries

PTBR



The TLB
 Caching of previous translations is done by a hardware component called… 
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The TLB can store a subset of the 
page table on the CPU in fast 
memory. In this example, 4 entries.



The TLB
 Caching of previous translations is done by a hardware component called… 
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When the CPU issues a logical address, the page 
number if compared to the key of each entry in the 
TLB, in parallel (in hardware, i.e., “zero” time)
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In this example, the page number is 3, 
which happens to match one of the 
keys in the TLB
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TLB Hit: we found that that page 3 is 
in frame 65 without ever looking up the 
page table in RAM. We proceed…



The TLB
 Caching of previous translations is done by a hardware component called… 
 The Translation Lookaside Buffer (TLB)  

 Each entry in the TLB is a <key, value> pair 
 You give it a key 
 The key is compared in parallel with all stored keys 
 If the key is found, then the associated value is returned 
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Say now we issue a logical address 
with page number 2. This doesn’t 
match any entry: it’s a TLB miss
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The TLB
 Caching of previous translations is done by a hardware component called… 
 The Translation Lookaside Buffer (TLB)  

 Each entry in the TLB is a <key, value> pair 
 You give it a key 
 The key is compared in parallel with all stored keys 
 If the key is found, then the associated value is returned 
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So now we have to look up the page 
table in RAM, which is more costly, and 
we find out the page number: 23

X



The TLB
 Caching of previous translations is done by a hardware component called… 
 The Translation Lookaside Buffer (TLB)  

 Each entry in the TLB is a <key, value> pair 
 You give it a key 
 The key is compared in parallel with all stored keys 
 If the key is found, then the associated value is returned 
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Now we can update the TLB with the 
2→23 translation, overwriting one of 
the entries in there, say the 1st one

X



TLB Performance
 Typical TLB characteristics:  

 Contains 12 to 4,096 entries 
 Performance:  

 On a hit: less than 1 clock cycle 
 On a miss: 10-100 clock cycles  

 Typical miss rate: 0.01 - 1%  

 A Replacement Policy must be defined when the TLB 
is full: 
 Least Recently Used (LRU)? Random?  

 Some TLBs allow for some entries to be un-evictable  
 e.g., kernel pages 



Experiment: How useful is the TLB?

 On the course web site, tlb_stress.c: a piece of code that allocates 
an array spanning multiple pages and then writes values at random 
locations (runs for some 20 seconds each time) 
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The TLB and Context-Switches
 What happens with the TLB on a context-switch? 
 Wipe the TLB clean?  

 VPN 7 of process A is not the same in the same frame as 
VPN 7 of process B 

 Called a “TLB flush” 
 But perhaps unnecessary aggressive (the two processes 

could happily share the TLB)  
 So your machine doesn’t do TLB flushes  

 ASIDs: Address-Space IDentifiers 
 Each TLB entry is annotated with a process identifier  
 The TLB can contain entries associated to multiple processes 
 Each lookup attempts to match entry ASIDs with the ASID of 

the current process (and if mismatch then it’s a TLB miss) 



One down, one to go…

 Problem #1: Paging has extra overhead 
 Solution: Use a TLB  

 Only works because our programs have locality 
“naturally” 

 which is why caches work, and the TLB is just 
one kind of cache  

 Problem #2: Page tables can be very large 
 Let’s look at this one now... 



Page Table Structure

 We’ve shown page tables like this:
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Page Frame Valid

 But once again, this is not quite right…



Page Table Entries
 One thing we haven’t talked about yet: how many bits are needed for a 

page table entry?  
 I’ve shown the page table as just a table with numbers in it (and the valid bit) 
 But the page table consumes space in RAM  

 Let us consider a system with 32-bit physical addresses, i.e., a 4GiB RAM 
 The n-th entry in the page table is:  

 The physical frame number 
 A few bits (for now we’ve seen the valid bit, but there are other things - stay 

tuned)  
 (The page number is just the index of the entry in the array of entries - stay tuned) 

 Let us assume a page/frame size of 4 KiB = 212 bytes  
 We have 232/212 = 220 frames in RAM  
 So the frame number can be encoded on 20 bits  
 So a page table entry is 20 bits for the frame number, and then extra bits 

for “other stuff” 
 Let’s say that 32 bits = 4 bytes are used (which is typical for a 32-bit 

architecture) 



Page Table Entries
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A Note on Page Table Structure
 The page table is just an array of entries 

 The entry for page 0 is the first element of the array 
 The entry for page 1 is the second element of the array 
 The entry for page i is the i-th element of the array  

 So when we say “lookup an entry” we don’t mean a search 
 Looking up the entry for page i means: PTBR + i × entry size  

 For instance:  
 The PTBR contains address 0xAAAA0000 
 The page table entry size is 4-bytes  
 I want to “lookup” the entry for page 10 
 The entry for that page is at address 0xAAAA0028  

 (i.e., PTBR + 4 × 10) 
 We get the 4 bytes at that address  
 These bytes are: the frame number, the valid bit, other useful bits 

 Let’s see an example that shows addresses…



A Process in RAM
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Let’s say we have a 
process with three 
pages in RAM



A Process in RAM
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In RAM, somewhere, 
the process’ page 
table is located



A Process in RAM
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register was set to the 
address of the first entry 
in the page table



A Process in RAM
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Page Table Size
 So we have page table entries that are each 

4 bytes  
 Let’s consider a process with a 4GiB 

address space 
 This process has 232/212 = 220 pages  

 Because the page size is 212 bytes 
 The process’ page table thus has 220 entries 
 Therefore, the page table takes up 220 × 22 

= 222 bytes  
 which is 4 MiB  

 So we need 4 MiB of contiguous RAM 
space to store the page table 



Page Table Size
 So we have page table entries that are each 

4 bytes  
 Let’s consider a process with a 4GiB 

address space  
 This process has 232/212 = 220 pages  

 Because the page size is 212 bytes 
 The process’ page table thus has 220 entries 
 Therefore, the page table takes up 220 × 22 

= 222 bytes  
 which is 4 MiB  

 So we need 4 MiB of contiguous RAM 
space to store the page table  

 We need 4 MiB of contiguous RAM space!!!! 

page 
table 

(1024x 
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a page!)
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We have a Huge Problem
 We use paging to avoid large contiguous slabs of RAM 
 To implement paging we use page tables 
 But page tables are large contiguous slabs of RAM  
 Sooooooo… to avoid big slabs to RAM we need big 

slabs of RAM 😱



We have a Huge Problem
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Splitting the Page into Pages!
 What do we do when we have big slabs or RAM? 
 We split them into pages!  
 So the (large) page table is stored in multiple, possible non-

contiguous pages  
 The main questions: how many page table entries can fit in a 

page?  
 In our example, a page is 4KiB and an entry is 4 bytes  
 So a page can contain 210 (1,024) entries  
 In the previous slide we said that our page table needs to have 

220 entries  
 Therefore, we need 220/210 = 210 pages of page table entries 

 That’s right: “page table pages”  

 Let’s see this on a picture... 
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Page Table Pages
 In practice, an 

inner page 
table page is 
not allocated 
until its needed
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Page Table Pages 4KiB
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Hierarchical Page Tables
 The picture on the previous slides is a hierarchical page table 
 Given a 32-bit virtual address we split it as follows: 

 The first 10 address bits: to pick one of the 210 entries in the outer page 
table should we use to find an inner page table page  

 The next 10 address bits: to pick one the 210 entries in the inner page 
table page should we use to find an address space page  

 The next 12 address the offset in that page 

 This works perfectly, in this example, because a page contains 210 
entries and 212 bytes 

10-bit index into  
outer page table

10-bit index into  
inner page table

12-bit offset 
in the page



Hierarchical Page Tables: Address Translation

 (Note: [@] means ”Contents at address @”) 
 Assume that a page table entry is 4 bytes 
 Address of the outer page table: PTBR 
 Address of the relevant outer page table entry: PTBR + 4 × p1 
 Address of the relevant page table page: [PTBR + 4 × p1] 
 Address of the relevant entry therein: [PTBR + 4 × p1] + 4 × p2 
 Address of the page: [[PTBR+4×p1]+4×p2] 
 Physical address: [[PTBR + 4 × p1] + 4 × p2] + offset  

(See OSTEP Section 20.3)

p1 p2 Offset



In-class Exercise
 Page size: 32 KiB 
 Logical addresses: 39 bits 
 Page table entry size: 8 bytes  

 Using 2-level (aka hierarchical) paging, how is a logical 
address split into 3 outer page, inner page, and offset 
(denoted p1, p2, offset)?  

 Typical approach:  
 How many bits for the offset? 
 How many page table entries can fit in a page? (gives us p2) 
 Then compute p1 as 39 - p2 - offset 



In-class Exercise (Solution)
 Page size: 32 KiB 
 Logical addresses: 39 bits 
 Page table entry size: 8 bytes  
 Using 2-level paging, how is a logical address split into 3 outer 

page, inner page, and offset (denoted p1, p2, offset)?  

 There are 25 × 210 = 215 bytes in a page, offset = 15 
 We can have up to 239−15 = 224 pages in the address space 
 We have 215/23 = 212 page table entries in a page 
 Therefore an inner page table page points to 212 pages: p2 = 12 
 Therefore, p1 = 39 - p2 - offset = 39 - 12 - 15 = 12 
 This is yet another “lucky” case in which everything fits perfectly 

(because the inner page table has exactly 212 entries) 



Another In-Class Exercise

 Page size: 64 KiB 
 Logical addresses: 41 bits 
 Page table entry size: 4 bytes  

 Using 2-level paging, how is a logical 
address split into 3 outer page, inner page, 
and offset (denoted p1, p2, offset)?  

 What fraction of the outer page table is 
utilized? 



Another In-Class Exercise
 Page size: 64 KiB 
 Logical addresses: 41 bits 
 Page table entry size: 4 bytes  
 Using 2-level paging, how is a logical address split into 3 outer 

page, inner page, and offset (denoted p1, p2, offset)?  
 What fraction of the outer page table is utilized?  

 offset = 16 bits (because 216 bytes in a page) 
 An inner page table page points to 216/22 = 214 pages 
 Therefore, p2 = 14 
 And p1 = 41 - 14 - 16 = 11 
 The outer page table page thus needs to hold 211 entries 
 But it could hold up to 214 entries 
 Therefore, only 211/214 = 1/8 = 12.5% of it are used! 



Hierarchical Page Tables are it then?  

 For 64-bit addresses, with 2-level paging, we are still in trouble 
though...  

 4 KiB page size, 4-byte page table entry  
 Assume 64-bit virtual addresses  
 One outer page can address 212/4 = 212/22 = 210 inner pages  
 Therefore: 64 - 10 - 12 = 42 bits to address all outer pages  
 The outer page size must be: 242×4=16×240 =16 TiB!  
 So we need an extra level: 32 (second outer page) + 10 + 10 + 12  
 But the second outer page is still 232 × 8 = 32 GiB and we now have three 

indirections  
 Conclusion: Hierarchical page tables become memory hogs for 

large address spaces with small pages  
 In practice: Virtual addresses are not 64-bit (cat /proc/
cpuinfo) but more like 48-bit  

 In practice: 4 levels are used 



Isn’t this Sloooooow?
 With 4 levels, the page-to-frame translation is pretty 

slow 
 It requires 4 memory accesses (outer, inner #1, 

inner #2, inner #3) to follow the chain of indirections 
 Plus some multiplications and additions 

 So yes, it’s more expensive, but we don’t really 
care… anybody sees why?



Isn’t this Sloooooow?
 With 4 levels, the page-to-frame translation is pretty 

slow 
 It requires 4 memory accesses (outer, inner #1, 

inner #2, inner #3) to follow the chain of indirections 
 Plus some multiplications and additions 

 So yes, it’s more expensive, but we don’t really 
care… anybody sees why? 

 Because we have a TLB! So we don’t perform the 
translation very often because all our programs 
have locality!



Hashed Page Tables

 A completely different idea: 
 Pick a maximum (desirable) size for the page 

table (say N)  
 Create a hash function that associates any VPN to 

an integer of 0..N-1  
 Structure the page table as a hash table using the 

hash function (each entry in 0..N-1 is a list of PFN) 

 This is interesting but not really done in 
practice 



Inverted Page Tables
 Yet another idea: 

 One table for all processes 
 One entry per physical memory frame 
 Each entry is: ASID + logical page number  
 CPU issues addresses like: PID + VPN + offset 
 And page table contains entries like (PID, p) to PFN 
 Searching for (PID, p) is expensive 

 You can’t have both great space- and time-complexity :) 
 And need for a mechanism to implement shared memory  

 Was used in: PowerPC, UltraSPARC, IA-64 (Itanium) 
– Discontinued



Conclusion

 Paging is a good idea, but it has its problems 
 Problem #1: Address translation is slow  

 Solution: Use a TLB  
 Problem #2: The Page Table shouldn’t be 

contiguous  
 Solution: Use a hierarchical structure 
 The hierarchical structure makes translation slower, 

but we don’t care because we have a TLB anyway! 
 We still have one big question: What happens 

when a process needs a new page, and there is 
no free frame??? 


