
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Virtual Memory and
Paging (4)

Paging Policies
 At this point, we have all the mechanisms but we need to

define the policies, namely
 The Page Replacement Policy: how to pick victims?
 The Frame Allocation Policy: how many frames to each process?

 The main goal: Minimize page faults
 Contrast with the CPU though:

 CPU Scheduling
 The CPU is so fast that the decisions have to be made very quickly
 Therefore, algorithms need to be simple

 Memory Scheduling
 The disk is so slow that it is worth spending some time to make a decision
 Avoiding a few more page faults can have a large impact on performance
 More sophisticated algorithms may be worthwhile
 As usual the OS works with imperfect/partial information (e.g., no

knowledge of the future, no knowledge of what jobs will do)

Page Replace Policy
 Let’s define the Page Replacement Problem
 Problem Input

 A set of page references
 A number of available frames allocated to the process

 Problem Objective: Minimize the number of page
faults

 This is a computational difficult problem (as usual)
 Let’s look at examples and how 3 standard

algorithms would work on them...

Optimal Page Replacement
 Of course we all want optimal algorithms for everything
 If we have perfect knowledge of the future, we can make optimal

page replacement decisions
 Not feasible in practice, but useful to have an upper bound on how

well we could do in an ideal scenario
 If I have an algorithm that in practice is 1% worse than the optimal

unfeasible algorithm, I can say that the algorithm is “very good”

 Optimal algorithm: evict the page that will not come in use for the
longest time (assuming I know the future)

 Think about it, it makes sense...
 Let’s go through an example with the following page reference

sequence:
7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

 Assuming that the process is allocated 3 frames only

Example: Optimal Algorithm

References 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Frame #0 7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 7 7

Frame #1 0 0 0 0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0

Frame #2 1 1 1 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1

Page faults x x x x x x x x x

References 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

 We have a total of 9 page faults - this is the best we can do

 Let’s now look at a simple algorithm that does not assume we know the
future (because we don’t)

Example: FIFO Page Replacement

References 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Frame #0 7 7 7 2 2 2 2 4 4 4 0 0 0 0 0 0 0 7 7 7

Frame #1 0 0 0 0 3 3 3 2 2 2 2 2 1 1 1 1 1 0 0

Frame #2 1 1 1 1 0 0 0 3 3 3 3 3 2 2 2 2 2 1

Page faults x x x x x x x x x x x x x x x

References 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

 We have a total of 15 page faults
 The problem with FIFO is that an old page may be used all the time
 So it is likely better to keep track of when a page was last used
 This leads us to our 3rd algorithm...

 FIFO: Kick out the oldest page brought to memory

Example: LRU Page Replacement

References 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Frame #0 7 7 7 2 2 2 2 4 4 4 0 0 0 1 1 1 1 1 1 1

Frame #1 0 0 0 0 0 0 0 0 3 3 3 3 3 3 0 0 0 0 0

Frame #2 1 1 1 3 3 3 2 2 2 2 2 2 2 2 2 7 7 7

Page faults x x x x x x x x x x x x

References 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

 We have a total of 12 page faults
 LRU is generally considered a “good” algorithm
 Question: How to keep track of the last time of use for each frame?

 LRU: Kick out the least recently used/accessed page

How to Implement LRU?
 Use counters?

 Augment each page table entry with a “time of use” field
 Increment a “clock” counter each time a memory access is

performed
 Update the “time of use” field with the clock value
 When eviction is necessary search for the minimum “time of use”

field: it is the victim frame
 High-overhead

 Use a stack?
 A frame is moved to the top of the stack after it is referenced
 Requires a bunch of pointers shuffling
 But the victim is always at the bottom of the stack

 The usual bad news is that...

Help from the Hardware?
 If the hardware does not provide any dedicated component,

overhead to do anything other than FIFO is too expensive :(
 OSes do not implement LRU page replacement

 But the hardware usually provides a reference bit
 Associated to each entry in each page table entry, and initially set

to 0
 Set to 1 by the hardware when the page is referenced
 Settable to 0 by the OS

 Can be used to make (somewhat) enlightened decisions

 One can do approximate LRU using the reference bit

Approximating LRU: The Clock Algorithm

 What OSes do: The Clock Algorithm
 Key idea: use one reference bit per frame
 Whenever a page is referenced by the program,

set its frame’s reference bit to 1

 When a page in a frame needs to be evicted:
 If the reference bit is 1, set it to 0, and move the queue

head to the next item in the queue
 If the reference bit is 0, evict the page in that frame

 A page in a frame that keeps on being referenced
is never evicted (its reference bit is always 1)

Clock Algorithm (8-frame Example)
 Initially all reference bit are set to 0 and the head of the queue is (say) positioned on the first

bit (the one for the first frame)

0 0 0 0 0 0 0 0

1 1 0 0 1 0 1 0

 As time goes on, frames are referenced by processes, so that some reference bits are set to
1... For example:

 Now a page fault happens and we have to find a victim
 While we “see” a 1 under the head, we set it to 0 and move the head to the right…

0 1 0 0 1 0 1 0

0 0 0 0 1 0 1 0

 We now see a zero: that’s our victim frame (frame 2 in this example)

Clock Algorithm (8-frame Example)

 The victim frame is evicted and a new page is loaded and referenced, updating the
reference bit. The pointer advances

0 0 0 0 1 0 1 0

0 0 1 0 1 0 1 0

 Before the next page faults, more frames have been references and more reference bits
have been updated…

0 0 1 1 1 0 1 1

 Say now we have a page fault? Which will be the next victim?

Frame 5 (the 6th frame)
(The first frame with a 0 reference bit when moving the head to the right)

Approximate LRU works!
 Make sure you read

OSTEP 22.6-22.8, which
talks about page
replacement and shows
simulation results like this
one

 This one is with some
locality: 80% of
references go to 20% of
pages

 Take-away: The Clock
algorithm is really close
to LRU

 It’s a good approximation
of it!

BEYOND PHYSICAL MEMORY: POLICIES 251

0 20 40 60 80 100
0%

20%

40%

60%

80%

100%
The 80-20 Workload

Cache Size (Blocks)

H
it

R
a

te
OPT
LRU
FIFO
RAND
Clock

Figure 22.9: The 80-20 Workload With Clock

The behavior of a clock algorithm variant is shown in Figure 22.9. This
variant randomly scans pages when doing a replacement; when it en-
counters a page with a reference bit set to 1, it clears the bit (i.e., sets it
to 0); when it finds a page with the reference bit set to 0, it chooses it as
its victim. As you can see, although it doesn’t do quite as well as perfect
LRU, it does better than approaches that don’t consider history at all.

22.9 Considering Dirty Pages

One small modification to the clock algorithm (also originally sug-
gested by Corbato [C69]) that is commonly made is the additional con-
sideration of whether a page has been modified or not while in memory.
The reason for this: if a page has been modified and is thus dirty, it must
be written back to disk to evict it, which is expensive. If it has not been
modified (and is thus clean), the eviction is free; the physical frame can
simply be reused for other purposes without additional I/O. Thus, some
VM systems prefer to evict clean pages over dirty pages.

To support this behavior, the hardware should include a modified bit
(a.k.a. dirty bit). This bit is set any time a page is written, and thus can be
incorporated into the page-replacement algorithm. The clock algorithm,
for example, could be changed to scan for pages that are both unused
and clean to evict first; failing to find those, then for unused pages that
are dirty, and so forth.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Global/Local Replacement
 Local Replacement: Victim among the process pages

 Limits the number of frames per process
 Global Replacement: Any victim can be selected

 Good for high-priority processes
 Performance of one process depends on other processes

 Global is generally used: simple and increases system
throughput

 So yes, your process could lose pages because my
process is page-faulting!

 It’s a jungle out there

Frame Allocation Algorithms

 The Frame Allocation Problem: How many
frames should be given to a process?

 Maximum number of frames: The physical
memory
 But making one process happy is not going to

please the other processes…

Frame Allocation Policies

 Fair Allocation: m frames, n processes: Give
each process m/n frames

 Proportional Allocation: if si is the size of
process i, and S = 𝛴 i si is the total size, give
si /S × m frames to process i

 Priority allocation: tweak the above with
priorities

 Current OSes implement variations on these
themes

Thrashing
 Phenomenon observed on systems with a global page replacement policy

and a high-level of multi-programming (many processes) using the whole
memory (e.g., a server)

 A process needs more frames, and so its page-fault rate increases
 It takes frames away from other processes, increasing their page-fault rates
 These processes are moved from the ready queue to the waiting one (since

they are waiting for the disk)
 The CPU utilization decreases
 Which is good for the CPU scheduler: It can start new processes!
 The first thing these new processes do is page fault, and they are sent to the

waiting queue right away
 At this point: No work gets done because each process is waiting for pages

 This is called thrashing
 Note the paradox: To increase the CPU utilization the multi-programming

level must be reduced
 The CPU scheduler is blind to memory issues :(

Thrashing Prevention
 Working Set Strategy:

 Observe the pages referenced by each process (called the working set)
 When the sum of the sizes of all working sets gets greater than the number

of memory frames, swap out an entire process and reclaim its frames
 Hence no thrashing (but one very unhappy process)

 Page-Fault Frequency Strategy:
 Monitor the page-fault rate for each process
 If the rate is above some (fixed) upper bound, give the process another

frame
 If the rate is below some (fixed) lower bound, take a frame from the

process
 If a process requests a new frame but none is available: swap it out

 “Thrashing” and “swapping” are often use interchangeably. Formally
though thrashing is the problem and swapping is the solution.

Conclusion
 An address space is a bunch of non-contiguous pages

(but virtualized as a big slab)
 Process Address Spaces can only be partially in memory
 Main issues:

 Page Replacement Policy
 Frame Allocation Policy

 Thrashing is bad

 There was A LOT of content in these 4 sets of lecture
notes (and we skipped many details!)

 OSes do exactly what we described conceptually, but use
many tricks

 In particular, to make sure page tables are not too large!

