
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

A Very Brief History
of OSes

The Pre-History
 Early OSes were just libraries

 Just some code as wrapper around tedious low-level
stuff that users just didn’t want to write

 No real abstractions
 No virtualization
 No resource allocation

 One program ran at a time, controller by a human
operator
 This was known as “batch mode”
 A big challenge was that the machine shouldn’t be

idling, due to high cost
 Absolutely no interactivity

System Calls

 Beyond Libraries

 People realized that user code should be
differentiated from kernel code, and that kernel
code should be “special”

 In pre-historic OSes, any program could do
anything to any hardware resource

 And so a bug in your code could crash the
computer/devices

 Development of the concept of a system call
 Programs now written as “please OS do something

for me” as opposed to as “I’ll do it myself”

Multiprogramming
 Multiprogramming led to the first “real OSes” (from

our modern perspective)

 Came about to improve CPU utilization (while
program #1 is idling, program #2 should be able to
utilize the CPU)

 Development of context-switching and memory
protection (which we’ll discuss at length)

 Beginning of concurrency
 Development of UNIX
 Make sure you read the “Importance of UNIX” box

in OSTEP 2.6 (page 15)

The Modern Era: PCs
 The PC changed the world (IBM, Apple)
 The OSes on these machines were... lacking
 Many see them as a step backward when compared to UNIX

 Worse memory protection (MS-DOS)
 Worse concurrency (MacOS v9)
 See the “Unfortunately, …” paragraph in OSTEP 2.6 :)

 But eventually, the good features of older OSes crept back in
 Mac OS X has UNIX as its core

 Windows NT was radically better than its predecessors

 The OSes you use (and like?) today have more to do with those
from the 1970’s than those from the 1980’s

 My Apple laptop and my Android phone basically run UNIX!

 Make sure you read the “And then came Linux” box in OSTEP
2.6 (page 16)

OS Genealogy

Unmodified from https://github.com/EG-tech/digipres-posters

https://github.com/EG-tech/digipres-posters

OS Design Goals
 Abstraction: to make the use of the computer convenient

 Building abstractions is of what Software Development is about
 Designing good abstractions will be part of your careers

 Performance: Minimize OS overhead (time, space)
 Often conflicts with the previous goal

 Protection: Programs must execute in isolation
 Comes from virtualization

 Reliability: The OS must not fail
 Thus OS software complexity is a concern (e.g., is it worth adding 2,000 lines of

complex code to improve something by some epsilon?)
 Resource efficiency: The OS must make it possible to use hardware

resources as best as possible

 There is no “best design” to achieve all the above, but many lessons
have been learned and we have converged to a common set of widely
accepted principles

Mechanism / Policy
 One ubiquitous principle: separating mechanisms and policies

 Policy: what should be done
 Mechanism: how it should be done (e.g., API functions)

 Separation is important so that one can change policy without
changing the mechanisms

 Mechanisms should be low-level enough that many useful policies
can be built on top of them

 e.g., Too high-level APIs may simply not allow you do do what you need
to do in our program

 Mechanisms should be high-level enough that implementing
useful policies on top of them is not too labor intensive

 e.g., Too low-level APIs may require you to write hundreds of lines of
code that you’d rather not have to write/debug

 Some OS designs take this separation principle to the extreme
(e.g., Solaris), and others not so much (e.g., Windows 7)

Separating Mechanisms and Policies

 This idea of “separating of mechanisms and policies”
probably sounds pretty vague/abstract/useless to many of
you

 As it did to me in college back when dinosaurs walked the earth
 Yet, you will be confronted to this issue in your future careers

 And it’s even on Wikipedia

 But until you’ve worked on a big system and/or worked on
designing APIs for others to use it’s hard to really get it

 Designing good APIs is WAY harder than you think!
 An OS course is full of fundamental/useful stuff that one realizes is

fundamental/useful often years after taking the course

 I’ll do my best to try to avoid this, but there are limits on how much
“this is important” jumping up and down I can do (convincingly)

https://en.wikipedia.org/wiki/Separation_of_mechanism_and_policy

Early OS Designs: Monolithic
 Early OSes (and MS-DOS)
 No precisely defined structure
 New “features” piled upon old

ones: snowball effect (usually
breaking, difficult maintenance, …)

 MS-DOS was written to run in the
smallest amount of space
possible, leading to poor
modularity, separation of
functionality, and security

 e.g., user programs can directly
access some devices

 e.g., no difference in execution of
user code and kernel code (soooo
insecure! we’ll see how this is done
today...)

Application Program

MS-DOS

Hardware

The MS-DOS Memory Trick
 In MS-DOS, due to memory limitations, user programs used to wipe

out (non-critical) parts of the OS to get more RAM for themselves

Kernel

Available
Memory

Full
Command
Interpreter

Kernel

Available
Memory

Reduced
Command
Interpreter

Process

Part of the command
interpreter is overwritten
by the process’ address

space!!

The part that’s left is the
code to re-load the full
command-interpreter!

 It’s hard for use to fathom the constraints developers worked with in that era…

OS Design: Layered
Layer N (user interface)

Layer N-1

Layer 0
Hardware

 Layer i only calls layer
i-1

 “Looks” like a clean
design, but it’s fraught
with difficulties

 Deciding what goes in
each layer is hard due
to circular dependencies

 Deciding on the best
number of layers is hard

 Too many: high
overhead

 Too few: bad modularity

OS Design: Layered
 The First UNIX has some layers
 But the kernel was still very large and difficult to maintain evolve

A bit of History
OS Design
Conclusion

Monolithic
Layered
Microkernels
Modules

OS Design: Layered

First UNIX had some layering

A huge monolithic kernel was in charge of everything and was
incredibly di�cult to maintain/evolve

Applications

Shells; Commands; Compilers; Interpreters;
System Libraries

System-call Interface to the Kernel

Signals terminal handling; File system; CPU
Scheduling; Character I/O system; Swapping;
Page replacement; Drivers (Terminal, disk,
tape); Demand paging virtual memory

Kernel Interface to the Hardware

Hardware (Terminal, disks, tapes, memory)

ke
rn
el

Henri Casanova (henric@hawaii.edu) Operating Systems

OS Design: Microkernels
 Concept: 1967; Practice: 1980s

 Basic idea: Remove as much as
possible from the kernel and put it
all in system programs

 The Kernel only does essential
management (process and
memory), and basic IPC (Inter-
Process Communication)

 Everything is implemented in
client-server fashion

 A client is a user program
 A server is a running system

program, in user space, that
provides some service

 Communication is through the
microkernel communication
functionality

 This is very easy to extend since
the microkernel does not change

App

Kernel - IPC

Hardware

Kernel - Mgmt

Server

App App App

Server Server

OS Design: Microkernels
 1980s: First LANs
 Led to a “Everything must be distributed” philosophy

 Client-Server based architectures will solve all issues
 So the kernel must have a client-server architecture as well

 Mach microkernel (Carnegie Mellon University): Research Project
 Precursor of Windows NT, MacOS, Linux

 Major issue: increased overhead because of IPC

 Windows NT 4.0 had a micro-kernel (and was slower than Windows 95)
 Oops... Microsoft put things back into the Kernel
 Windows XP (and 10 apparently) is closer to monolithic than microkernel

 Experts were very opinionated about what is a good kernel and
what is not

 Development/research around microkernels stopped in the 2000s
 But we know that a huge kernel is a problem!

OS Design: Modules
 Take good things from all kernel design
 Most modern OSes implement modules

 Use an “object-oriented” approach
 Each code component is separate
 They talk to each other over known APIs
 This is just good software engineering

 Loadable modules: Load at boot time or at runtime when needed
 Like a layered interface, since each module has its own interface
 Like a microkernel, since a module can talk to any other module

 But communication does not use IPC, i.e., no overhead
 Bottom-line: advantages of microkernels without the poor performance
 Pioneer: Solaris (Sun Microsystems, then Oracle)

 Small core kernel, 7 default modules loaded at boot, other modules loadable
on the fly whenever needed

 Most agree it was a “nice” kernel / OS

OS Design: General Principles
 No modern OS strictly adheres to on of these designs

(except for educational purposes)

 The accepted wisdom
 Don’t stray too far from monolithic, so as to have good

performance
 Modularize everything else to still be able to maintain the

code base
 It’s a complicated balancing act and every kernel does it

a little bit differently
 And it’s hard to compare metrics like LOC (lines of code)

because different OSs have different components “in the
kernel” or “outside the kernel”

Conclusion
 OSes have a “long” and exciting history
 Lessons from past failures and successes have given

us current OS designs
 A key design principle is Separation of Mechanisms

and Policies
 Reading Assignment: OSTEP 2.5-2.6

