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Definition
 A process is a program in execution 

 Program: passive entity (bytes stored on disk as an executable file) 
 Becomes a process when it is loaded into memory, at which point 

the fetch-decode-execute cycle can begin  
 The process abstraction is defined by the OS to virtualize the CPU 

 Multiple processes can be associated to the same program  

 A user can start multiple instances of the same program (e.g., bash) 
 Typically many processes run on a system  

 System processes (started by the OS to do “system things”) 
 User processes (started by users) 
 The terms “process” and “jobs” are used interchangeably in OS 

textbooks 
 The set of locations that store bytes that a process can use/

reference is called the process’ address space…



Process Address Space
 The code (also called text) 

 Binary instructions, loaded into RAM by the OS from an 
executable file 

 The static data 
 The global variables and static local variables, which can be 

initialized (.data segment in x86 assembly) or not (.bss 
segment in x86 assembly) 

 The heap 
 The zone of RAM in which new data can be be dynamically 

allocated (using malloc, new, etc.) 
 The runtime stack 

 The zone of RAM for all bookkeeping related to method/
procedure/function calls (more in the next slides)



Process Address Space
 The OS can be configured to limit parts of a 

process’ address space 
 On UNIX-like systems you can find out what some 

limits are (all in KiB): 
 ulimit -d       (data + heap) 
 ulimit -s   (stack size) 
 ulimit -m  (maximum Resident Set Size) 

 These limits can be changed system-wide using 
the ulimit command 

 They can also be changed by the process itself 
using the setrlimit() system call 

 Let’s see what limits are on my laptop ⚙  
 When running a Java program you can specify 

some limits 
 java -Xmx512m -Xss1m … 
 512 MiB maximum heap size, 1MiB maximum 

stack size
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The Heap
 New (i.e., dynamically allocated) bytes (objects, arrays, etc.) are 

allocated on the Heap (malloc() in C, new in Java/C++/C#, 
implicit in Python, etc.) 

 Can be handled by a memory manager (e.g., the JVM, a library, 
the Python interpreter) but ultimately it is the OS that provides 
dynamic memory allocation 

 There is a system call that says “please OS, give me XX more 
bytes” 

 At some point you will get an Out Of Memory error if you keep 
dynamically allocating memory 

 On my Linux box (not Docker), let’s write a simple C program 
that calls malloc() 10,000 times for 1 byte and look at the 
addresses returned ⚙



The Heap (what we found out)

 When calling malloc() for 1 byte, the space used is actually more 
than 1 byte! 

 In our case addresses were 32 bytes apart, so we “wasted" 31 
bytes for each malloc()!! 

 Calling malloc(), say,  10,000 times for 1 byte “wastes” memory 
when compared to calling malloc() 1 time for 10,000 bytes 

 This is due to the implementation of the OS’s “memory allocator” 
 It needs to store meta-data about the chunk of memory allocated 

so that later it knows what to do when free() is called 
 It will often allocate memory at addresses that are multiple of 

some small power of 2 
 Let’s now strace this program we just wrote and see what the 

“give me more memory!” system call is ⚙



The Heap (what we found out)
 The “give me more memory!” system call is brk() 
 The man page for brk() shows that it is used to extend the heap up to 

some address that is beyond the current “end of the heap” address 
 brk(NULL)  “asks” where the data+heap ends 

 But there is an optimization: to avoid placing too many system calls, a first 
call to malloc() will ask the OS for way more memory that needed 

 In our case, it was 132 KiB! (This can be configured in the OS) 
 Subsequent calls to malloc() just grab some of that memory without 

needing to involve the OS, because system calls have overhead 
 So when calling malloc(1), memory footprint can grow by 132KiB! 
 In our program, we called malloc(1) 10,000 times, and for each byte 

we actually use 32 bytes, so we need 320,000 bytes in total 
 So there are ⌈320000 / 132*1024 ⌉= 3 calls to brk() 
 Everything makes sense now.. how satisfying 

 It’s a tiny bit more complicated than that… isn’t everything in the OS?



The Runtime Stack
 Each process has in RAM a stack (a last-in-first-out data 

structure) where items can be pushed or popped 
 It is used to manage method/procedure/function calls and returns 
 On each call, an activation record is pushed onto the stack to do 

all the bookkeeping necessary for placing/returning from the call 
 It contains parameters, return address, local variables, saved register 

values 
 The code to manage the stack is generated by compilers/

interpreters 
 In ICS 312 we learn all the details 

 The stack size is limited 
 But configurable upon process creation (see Homework #1) 

 Going over that limit is called a Stack Overflow 
 Happens, for instance, with a deep (or infinite) recursion



The Kernel Stack
 The code in the kernel uses functions, and therefore it must have 

a stack to call these functions 
 But, to save space, the kernel’s stack is very small (16KB!!) 
 Therefore, when writing functions in the kernel, these functions 

cannot allocate a lot on the stack 
 Not many parameters, not many local variables, no deep call 

sequences, and definitely no recursion 

 This is one of the differences between user-level development 
and kernel-level development 

 Many difference are due to the lack of standard libraries 
 Standard libraries use system calls, which are implemented in the 

kernel, and so kernel code can’t use these convenient libraries 
 e.g., you can’t use printf when writing kernel code



Logical Address Space
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 Typical depiction of a process’ address space 
 The heap grows toward high addresses 
 The stack grows toward low addresses 
 When they collide you’ve run out of memory 

 This is the logical view of a process’ address 
space (i.e., virtualization of memory) 

 We can easily experience this logical view by 
writing a C program that prints text, data, heap 
and stack addresses on Linux ⚙  

 But this is not at all what things look like in 
physical memory 

 Because of “paging”, which we’ll talk about 
much later in the semester 

 And because that “free space” (in blue) 
would be a total waste if the program 
doesn’t need additional stack/heap space!



Two Processes / One Program Example
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Process Life Cycle

 Each process goes through a lifecycle 
 This term (in computer science) means that: 

 There is a finite number of possible states 
 There are allowed transitions between some states 
 These transitions happen when some event occurs 

 Before we look at the current process file 
cycle, let’s go back in time to so-called “single-
tasking OSes”…



Single-Tasking Ones
 OSes used to be single-tasking: only one process could be 

in memory at a time 
 MS-DOS is the (last commercial?) most well-known example  

 A command interpreter is loaded upon boot 
 When a program needs to execute, no new process is created 
 Instead the program’s code is loaded in memory by the command 

interpreter, which overwrites part of itself with it! 
 Done to cope with a very small RAM back in the days 

 The instruction pointer is set to the 1st instruction of the program 
 The small left-over portion of the interpreter resumes after the 

program terminates 
 This small portion reloads the full code of the interpreter from disk 

back into memory 
 The full interpreter is resumed
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Single-Tasking Process 
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Problem: While a process 

is doing I/O, the CPU is 
idle, which is not only 
inconvenient but a waste 



Multi-Tasking (aka Multiprogramming)

 In modern OSes, multiple processes can be 
in RAM at the same time 

 Each with its own address space 
 While it’s running, a process thinks it’s alone 

on the machine (it doesn’t see anything 
outside of its address space) 

 There is a system call to create a new 
process that any process can place (to 
create a “child” process) 

 See Homework #1 
 When a process terminates, its RAM space 

is reclaimed by the OS 

 Therefore, a process can be ready to run 
but not running because another process is 
currently running on the CPU 

 The lifecycle needs a new state!

Kernel

Process #1

Free space

Process #2

Process #3



The Ready State 

 A process can be ready to run but not 
currently running: It’s in the ready state 

 It is the job of the OS to select one of the 
ready processes whenever the CPU 
becomes idle 
 This is part of what’s called “scheduling” 

 This is how the OS virtualizes the CPU, so 
that each process has the illusion it is the 
only one using the CPU 

 We have a more complicated lifecycle…
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It’s important that you have this 
diagram in mind 

The narrative is straightforward: just 
practice drawing this diagram by 
telling yourself the story, not by 
memorizing it!
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 It’s not rocket science, but it’s one of the many 
examples of developers gaining inspiration from 
Operating Systems (which have benefited from 
decades of development, evolution, learned 
lessons, etc.) 

 When designing a system it’s a good idea to 
ask oneself “How does the OS do it?” (because 
it probably does it pretty well….)



Process Control Block
 The OS uses a data structure to keep track of each process 
 This structure is called the Process Control Block (PCB) and contains:  

 Process state  

 Process ID (aka PID)  

 User ID  

 Saved Register Values (include PC)  

 CPU-scheduling information (see “Scheduling” Module)  
 Memory-management information (see “Main Memory” and “Virtual Memory” 

modules)  
 Accounting information (amount of hardware resources used so far) 
 I/O Status Info (e.g., for open files)  
 … and a lot of other useful things 

 Let’s look at Figure 4.5 in OSTEP (for the Educational xv6 kernel) 
 Let’s look at the task_struct data structure in /usr/src/linux-
headers-5.15.0-25/include/linux/sched.h (on our Docker 
image)



The Process Table
 The OS has in memory (in the Kernel space) one PCB per process 

 A new PCB is created each time a new process is created 
 A PCB is destroyed each time a process terminates 

 The OS keeps a “list” of PCBs: the Process Table 
 Because Kernel size (i.e., its memory footprint) is bounded, so is the 

Process Table  

 Therefore, the Process Table can fill up!  

 If you (or your program) keeps creating new processes, at some point, 
the process creation will fail 

 One of the many ways in which a system can become unusable 
 Because at that point you can’t even start a new Shell, since the Shell is a 

process!  

 Anybody has heard of the “fork bomb” term?  
 Let’s find out the max number of possible processes on our container…  

 cat /proc/sys/kernel/threads-max



Conclusion

 Processes are running programs 
 Multiple processes co-exist in RAM  

 The question of what happens when we run out of 
RAM space will be answered much later in the 
semester...  

 Information about each process is stored in a 
data structure called the PCB 

 The OS keeps a Process Table of all the PCBs 

 Onward to the Process API.... 


