
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

The Process
Abstraction

Definition
 A process is a program in execution

 Program: passive entity (bytes stored on disk as an executable file)
 Becomes a process when it is loaded into memory, at which point

the fetch-decode-execute cycle can begin
 The process abstraction is defined by the OS to virtualize the CPU

 Multiple processes can be associated to the same program

 A user can start multiple instances of the same program (e.g., bash)
 Typically many processes run on a system

 System processes (started by the OS to do “system things”)
 User processes (started by users)
 The terms “process” and “jobs” are used interchangeably in OS

textbooks
 The set of locations that store bytes that a process can use/

reference is called the process’ address space…

Process Address Space
 The code (also called text)

 Binary instructions, loaded into RAM by the OS from an
executable file

 The static data
 The global variables and static local variables, which can be

initialized (.data segment in x86 assembly) or not (.bss
segment in x86 assembly)

 The heap
 The zone of RAM in which new data can be be dynamically

allocated (using malloc, new, etc.)
 The runtime stack

 The zone of RAM for all bookkeeping related to method/
procedure/function calls (more in the next slides)

Process Address Space
 The OS can be configured to limit parts of a

process’ address space
 On UNIX-like systems you can find out what some

limits are (all in KiB):
 ulimit -d (data + heap)
 ulimit -s (stack size)
 ulimit -m (maximum Resident Set Size)

 These limits can be changed system-wide using
the ulimit command

 They can also be changed by the process itself
using the setrlimit() system call

 Let’s see what limits are on my laptop ⚙
 When running a Java program you can specify

some limits
 java -Xmx512m -Xss1m …
 512 MiB maximum heap size, 1MiB maximum

stack size

Kernel

Text

Data

Heap

Stack

RAM

pr
oc

es
s

ad
dr

es
s

sp
ac

e

Free space

Free space

The Heap
 New (i.e., dynamically allocated) bytes (objects, arrays, etc.) are

allocated on the Heap (malloc() in C, new in Java/C++/C#,
implicit in Python, etc.)

 Can be handled by a memory manager (e.g., the JVM, a library,
the Python interpreter) but ultimately it is the OS that provides
dynamic memory allocation

 There is a system call that says “please OS, give me XX more
bytes”

 At some point you will get an Out Of Memory error if you keep
dynamically allocating memory

 On my Linux box (not Docker), let’s write a simple C program
that calls malloc() 10,000 times for 1 byte and look at the
addresses returned ⚙

The Heap (what we found out)

 When calling malloc() for 1 byte, the space used is actually more
than 1 byte!

 In our case addresses were 32 bytes apart, so we “wasted" 31
bytes for each malloc()!!

 Calling malloc(), say, 10,000 times for 1 byte “wastes” memory
when compared to calling malloc() 1 time for 10,000 bytes

 This is due to the implementation of the OS’s “memory allocator”
 It needs to store meta-data about the chunk of memory allocated

so that later it knows what to do when free() is called
 It will often allocate memory at addresses that are multiple of

some small power of 2
 Let’s now strace this program we just wrote and see what the

“give me more memory!” system call is ⚙

The Heap (what we found out)
 The “give me more memory!” system call is brk()
 The man page for brk() shows that it is used to extend the heap up to

some address that is beyond the current “end of the heap” address
 brk(NULL) “asks” where the data+heap ends

 But there is an optimization: to avoid placing too many system calls, a first
call to malloc() will ask the OS for way more memory that needed

 In our case, it was 132 KiB! (This can be configured in the OS)
 Subsequent calls to malloc() just grab some of that memory without

needing to involve the OS, because system calls have overhead
 So when calling malloc(1), memory footprint can grow by 132KiB!
 In our program, we called malloc(1) 10,000 times, and for each byte

we actually use 32 bytes, so we need 320,000 bytes in total
 So there are ⌈320000 / 132*1024 ⌉= 3 calls to brk()
 Everything makes sense now.. how satisfying

 It’s a tiny bit more complicated than that… isn’t everything in the OS?

The Runtime Stack
 Each process has in RAM a stack (a last-in-first-out data

structure) where items can be pushed or popped
 It is used to manage method/procedure/function calls and returns
 On each call, an activation record is pushed onto the stack to do

all the bookkeeping necessary for placing/returning from the call
 It contains parameters, return address, local variables, saved register

values
 The code to manage the stack is generated by compilers/

interpreters
 In ICS 312 we learn all the details

 The stack size is limited
 But configurable upon process creation (see Homework #1)

 Going over that limit is called a Stack Overflow
 Happens, for instance, with a deep (or infinite) recursion

The Kernel Stack
 The code in the kernel uses functions, and therefore it must have

a stack to call these functions
 But, to save space, the kernel’s stack is very small (16KB!!)
 Therefore, when writing functions in the kernel, these functions

cannot allocate a lot on the stack
 Not many parameters, not many local variables, no deep call

sequences, and definitely no recursion

 This is one of the differences between user-level development
and kernel-level development

 Many difference are due to the lack of standard libraries
 Standard libraries use system calls, which are implemented in the

kernel, and so kernel code can’t use these convenient libraries
 e.g., you can’t use printf when writing kernel code

Logical Address Space

Text

Data

Heap

Stack

pr
oc

es
s

ad
dr

es
s

sp
ac

e

Free Space

growth

growth

 Typical depiction of a process’ address space
 The heap grows toward high addresses
 The stack grows toward low addresses
 When they collide you’ve run out of memory

 This is the logical view of a process’ address
space (i.e., virtualization of memory)

 We can easily experience this logical view by
writing a C program that prints text, data, heap
and stack addresses on Linux ⚙

 But this is not at all what things look like in
physical memory

 Because of “paging”, which we’ll talk about
much later in the semester

 And because that “free space” (in blue)
would be a total waste if the program
doesn’t need additional stack/heap space!

Two Processes / One Program Example

Text

Data

Heap

Stack

Text

Data

Heap

Stack

pr
oc

es
s

#1
 a

dd
re

ss
 s

pa
ce

process #2 address space

same size
same content

same size
different content

different size
different content

different size different content

Process Life Cycle

 Each process goes through a lifecycle
 This term (in computer science) means that:

 There is a finite number of possible states
 There are allowed transitions between some states
 These transitions happen when some event occurs

 Before we look at the current process file
cycle, let’s go back in time to so-called “single-
tasking OSes”…

Single-Tasking Ones
 OSes used to be single-tasking: only one process could be

in memory at a time
 MS-DOS is the (last commercial?) most well-known example

 A command interpreter is loaded upon boot
 When a program needs to execute, no new process is created
 Instead the program’s code is loaded in memory by the command

interpreter, which overwrites part of itself with it!
 Done to cope with a very small RAM back in the days

 The instruction pointer is set to the 1st instruction of the program
 The small left-over portion of the interpreter resumes after the

program terminates
 This small portion reloads the full code of the interpreter from disk

back into memory
 The full interpreter is resumed

Single-Tasking with MS-DOS

Kernel

Command
Interpreter

Idle
Full command interpreter

Free space

Single-Tasking with MS-DOS

Kernel

Command
Interpreter

Idle
Full command interpreter

Free space

Kernel

Command Interpreter
re-launch code

Running a program
Reduced command interpreter

Free space

User
Process

Single-Tasking Process
Lifecycle
 The process lifecycle was very simple:

New

Single-Tasking Process
Lifecycle
 The process lifecycle was very simple:

New

Running

Accepted

Single-Tasking Process
Lifecycle
 The process lifecycle was very simple:

New

Running

Waiting

Accepted

I/O Initialized

Often named
“Blocked”

Single-Tasking Process
Lifecycle
 The process lifecycle was very simple:

New

Running

Waiting

Accepted

I/O Initialized I/O Completed

Single-Tasking Process
Lifecycle
 The process lifecycle was very simple:

New

Running

Waiting

TerminatedAccepted

I/O Initialized I/O Completed

Exit

Single-Tasking Process
Lifecycle
 The process lifecycle was very simple:

New

Running

Waiting

TerminatedAccepted

I/O Initialized I/O Completed

Exit
Problem: While a process

is doing I/O, the CPU is
idle, which is not only
inconvenient but a waste

Multi-Tasking (aka Multiprogramming)

 In modern OSes, multiple processes can be
in RAM at the same time

 Each with its own address space
 While it’s running, a process thinks it’s alone

on the machine (it doesn’t see anything
outside of its address space)

 There is a system call to create a new
process that any process can place (to
create a “child” process)

 See Homework #1
 When a process terminates, its RAM space

is reclaimed by the OS

 Therefore, a process can be ready to run
but not running because another process is
currently running on the CPU

 The lifecycle needs a new state!

Kernel

Process #1

Free space

Process #2

Process #3

The Ready State

 A process can be ready to run but not
currently running: It’s in the ready state

 It is the job of the OS to select one of the
ready processes whenever the CPU
becomes idle
 This is part of what’s called “scheduling”

 This is how the OS virtualizes the CPU, so
that each process has the illusion it is the
only one using the CPU

 We have a more complicated lifecycle…

Process Lifecycle

New

Process Lifecycle

New
Accepted

Ready

Process Lifecycle

New

Running

Accepted

Ready

Scheduled

Process Lifecycle

New

Running

Accepted

Ready

Scheduled

Descheduled

Process Lifecycle

New

Running

Waiting

Accepted

I/O InitializedI/O Completed

Ready

Scheduled

Descheduled

Process Lifecycle

New

Running

Waiting

Terminated

Accepted

I/O InitializedI/O Completed

Exit

Ready

Scheduled

Descheduled

Process Lifecycle

New

Running

Waiting

Terminated

Accepted

I/O InitializedI/O Completed

Exit

Ready

Scheduled

Descheduled

It’s important that you have this
diagram in mind

The narrative is straightforward: just
practice drawing this diagram by
telling yourself the story, not by
memorizing it!

Android activity lifecycle

Other Lifecycles

Android activity lifecycle

Other Lifecycles

AWS instance lifecycle

Android activity lifecycle

Other Lifecycles

AWS instance lifecycle
iOS app lifecycle

Android activity lifecycle

Other Lifecycles

AWS instance lifecycle
iOS app lifecycle

6/28/23, 1:46 AM lifecycle-of-a-label

file:///Users/henric/Desktop/lifecycle-of-a-label.svg 1/1

Google Drive label lifecycle

Android activity lifecycle

Other Lifecycles

AWS instance lifecycle
iOS app lifecycle

6/28/23, 1:46 AM lifecycle-of-a-label

file:///Users/henric/Desktop/lifecycle-of-a-label.svg 1/1

Google Drive label lifecycle

 It’s not rocket science, but it’s one of the many
examples of developers gaining inspiration from
Operating Systems (which have benefited from
decades of development, evolution, learned
lessons, etc.)

 When designing a system it’s a good idea to
ask oneself “How does the OS do it?” (because
it probably does it pretty well….)

Process Control Block
 The OS uses a data structure to keep track of each process
 This structure is called the Process Control Block (PCB) and contains:

 Process state

 Process ID (aka PID)

 User ID

 Saved Register Values (include PC)

 CPU-scheduling information (see “Scheduling” Module)
 Memory-management information (see “Main Memory” and “Virtual Memory”

modules)
 Accounting information (amount of hardware resources used so far)
 I/O Status Info (e.g., for open files)
 … and a lot of other useful things

 Let’s look at Figure 4.5 in OSTEP (for the Educational xv6 kernel)
 Let’s look at the task_struct data structure in /usr/src/linux-
headers-5.15.0-25/include/linux/sched.h (on our Docker
image)

The Process Table
 The OS has in memory (in the Kernel space) one PCB per process

 A new PCB is created each time a new process is created
 A PCB is destroyed each time a process terminates

 The OS keeps a “list” of PCBs: the Process Table
 Because Kernel size (i.e., its memory footprint) is bounded, so is the

Process Table

 Therefore, the Process Table can fill up!

 If you (or your program) keeps creating new processes, at some point,
the process creation will fail

 One of the many ways in which a system can become unusable
 Because at that point you can’t even start a new Shell, since the Shell is a

process!

 Anybody has heard of the “fork bomb” term?
 Let’s find out the max number of possible processes on our container…

 cat /proc/sys/kernel/threads-max

Conclusion

 Processes are running programs
 Multiple processes co-exist in RAM

 The question of what happens when we run out of
RAM space will be answered much later in the
semester...

 Information about each process is stored in a
data structure called the PCB

 The OS keeps a Process Table of all the PCBs

 Onward to the Process API....

