
Henri Casanova (henric@hawaii.edu)

ICS332

Operating Systems

Inter-Process
Communications
(IPC)

Communicating Processes?
 So far we have seen independent processes

 Each process runs code independently

 Parents and aware of their children, and children are aware of their

parents, but they do not interact

 Besides the ability to wait for a child to terminate and to kill another process

 But often we need processes to cooperate

 To share information (e.g., access to common data)

 To speed up computation (e.g., to use multiple cores)

 Because it’s convenient (e.g., some applications are naturally

implemented as sets of interacting processes)

 But, processes cannot see each other’s address spaces!

 In general, the means of communication between cooperating

processes is called Inter-Process Communication (IPC)

Communication Models
 Process A needs to communicate with Process B

Process A

Process B

Available
Memory

Kernel

Message Passing
 Option #1: Message Passing

Kernel

Process A

Process B

Available
Memory

Msg

Message Passing
 Option #1: Message Passing

Kernel

Process A

Process B

Available
Memory

Msg

Msg

Data copy to a kernel buffer

Message Passing
 Option #1: Message Passing

Kernel

Process A

Process B

Available
Memory

Msg

Msg

Msg

Data copy from a kernel buffer

Message Passing
 Option #1: Message Passing

Kernel

Process A

Process B

Available
Memory

Msg

Msg

Process B has now the
message in its address
space

Message Passing
 Option #2: Shared Memory

Kernel

Process A

Process B

Available
Memory

Shared Memory

A zone of memory that
“belongs” to both processes’s
address space, so that each
can read/write at will it it and
the other can “see” it all

Pros and Cons
 Message Passing

 😀 Simple to implement in the
kernel

 😡 Limited by kernel size:
small messages

 😡 One syscall per operation
(send / receive): high
overhead

 😡 Cumbersome for users as
code can be hard to read with
sends/receives everywhere

 Shared memory

 😡 Not as easy to implement in

the kernel (stay tuned…)

 😀 Large messages allowed

 😀 Low overhead: a few

syscalls to set it up, and then no
kernel involvement thereafter

 😀 Convenient for users (after
setup, just normal memory
reads/writes)

 😡 Violates the principle of
memory protection between
processes, which can lead to
horrible bugs

Message Passing
 All OSes provide several IPC abstractions and API

 And so do many user-level libraries

 In your careers you will have to define abstraction and APIs for all kinds

of purposes

 Abstraction and API design choices often seem innocuous but can have

huge impact

 Good choices can lead to awesome success, bad choices can lead to abject

failures/rewrites

 Making good Abstraction/API choices is hard:

 Sufficiently expressive (can users do anything they might want to do with it?)

 Sufficiently convenient (can users do what they want easily?)

 Not too hard for you to implement/maintain/evolve

 Pedagogic challenge: Conveying to college students how important/
crucial this is, when it all seems like a bunch of pointless nitpicking

 You wouldn’t believe the number of hours spent daily on minuscule API details in
the software industry

 Because you haven’t yet experienced the above “snowball effect” of your poorly
designed Abstractions/API



POSIX Message Queue
 A standard message passing scheme supported by

UNIX-like systems are POSIX Message Queues

 There is a message queue “object” that has a name, a

maximum msg size, and a maximum number of msg in the
queue

 Both processes create their own queue object using the same
name (meaning they both have a reference to the same queue)

 The queue object supports send/receive operations

 This Abstraction/API makes several design choices

 One option called “direct communication” would have been “I
am process A and I send a message to process B”, which
requires that process B is created/known when A does the send

 Instead, this API uses “indirect communication” by using a
message queue object, which is more flexible

 Just for kicks let’s look at a hello world example…

POSIX MQ Hello World

 Let’s look at and run the real/full code in posix_mq_example.c

 Conceptually this is just like network communication, but within a machine

 There are SO many abstractions/implementations of message passing for all kinds

of scenarios/purposes, each with slight differences

pid_t pid = fork();

if (pid) { // parent

 mqd_t queue = mq_open(“mq”, O_CREAT | O_WRONLY, 0664, NULL);

 char msg[MSG_SIZE] = “Hello!";

 mq_send(queue, msg, MSG_SIZE, 1);

 waitpid(pid, NULL, 0);

 mq_close(queue);

 mq_unlink(MQ_NAME);

} else { // child

 mqd_t queue = mq_open(“mq”, O_CREAT | O_RDONLY, 0664, NULL);

 char msg[MSG_SIZE];

 mq_receive(queue, msg, MSG_SIZE, NULL);

 mq_close(queue);

 mq_unlink(MQ_NAME);

}

POSIX Shared Memory Segments
 Like there is a POSIX MQ API, there is a POSIX SHM (Shared

Memory) API

 The abstraction is that of a “shared memory segment” with a

simple API

 One process can create a shared memory segment

 Multiple processes can then attach it to their address spaces

 Bye bye memory protection

 It’s the processes’ (i.e., the developer’s) responsibility to make sure

that processes are not stepping on each other’s toes

 Once the setup is done, the OS is not involved

 What happens in shared memory stays in shared memory

 At some point, the shared memory segment is freed by the

requester

 Let’s look at a Hello World example…

POSIX SHM Hello World

 Let’s look at and run the real/full code in posix_shm_example.c

int segment_id = shmget(IPC_PRIVATE, 10*sizeof(char), SHM_R | SHM_W);

pid = fork();

if (pid) { // parent

 char *shared_memory = (char *)shmat(segment_id, NULL, 0);

 sprintf(shared_memory, "hello");

 waitpid(pid, NULL, 0);

 shmdt(shared_memory);

 shmctl(segment_id, IPC_RMID, NULL);

} else { // child

 char *shared_memory = (char *)shmat(segment_id, NULL, 0);

 fprintf(stdout,"Child: read '%s' in SHM\n", shared_memory);

 shmdt(shared_memory);

}

POSIX SHM Hello World

 Let’s look at and run the real/full code in posix_shm_example.c

int segment_id = shmget(IPC_PRIVATE, 10*sizeof(char), SHM_R | SHM_W);

pid = fork();

if (pid) { // parent

 char *shared_memory = (char *)shmat(segment_id, NULL, 0);

 sprintf(shared_memory, "hello");

 waitpid(pid, NULL, 0);

 shmdt(shared_memory);

 shmctl(segment_id, IPC_RMID, NULL);

} else { // child

 char *shared_memory = (char *)shmat(segment_id, NULL, 0);

 fprintf(stdout,"Child: read '%s' in SHM\n", shared_memory);

 shmdt(shared_memory);

}

Note that the child needs the segment_id. In this
case, we’re ok because shmget() is called before
fork(). But if the child was a different program (e.g.,
after an exec()), then the segment_id would need
to be communicated to the child (e.g., via message
passing!!)

The IPC Zoo
 There are many IPC abstractions that fall into the message passing or

the shared memory category, or blur the lines

 Signals, sockets, message queues, pipes, shared memory segments, files, …

 Several abstractions share common characteristics but have a few key
differences (e.g., a message queue and a socket)

 There is a distinction between the abstraction that’s exposed by the API
and the implementation of this API

 In fact, many abstractions can be implemented on top of others

 message queues on top of shared memory segments

 message queues on top of files

 message queues on top of sockets

 shared memory segments on top of message passing

 …

 Some implementations are only for IPCs within a machine, some
implementations are also for across machines over a network

 Let’s now talk about a very, very commonplace abstraction: pipes

Pipes

 One of the most ancient, yet simple, useful,
and powerful IPC mechanism provided by
OSes is typically called pipes

 We explore this in a programming
assignment, so it’s a good idea to pay close
attention

 But first, let’s take a little detour about UNIX
file descriptors and output redirection...

stdin, stdout, stderr
 In UNIX, every process comes with 3 already opened “files”

 Not real files, but in UNIX “everything looks like a file”

 These files, or streams, are:

 stdin: the standard input stream

 stdout: the standard output stream

 stderr: the standard error stream

 You’ve encountered these when developing code (C/C++, Java, Python,
etc.)

 e.g., printf writes to stdout

 Each file in UNIX is associated to an integer file descriptor

 An index into some “this process’ open files” table

 By convention, the file descriptors for each standard stream are (see /
usr/include/unistd.h):

 stdin: STDIN_FILENO = 0

 stdout: STDOUT_FILENO = 1

 stderr: STDERR_FILENO = 2

Re-directing output
 Perhaps some of you have wondered how come something like ls >
file.txt can work?

 After all, ls has code that looks like:

 fprintf(stdout, "%s", filename);

 So how can this code magically knows to write to a file instead of to

stdout???

 This is one of the famous UNIX “tricks”

 In UNIX, when I open a new file, this file gets the first available file

descriptor number

 So, if I close stdout, and open a file right after, this file will have file

descriptor 1

 Therefore, printf() will write to it as if it were stdout

 Because fprintf(stdout, ...) really means “write to file descriptor 1”

 And I don’t need to change the code of ls at all!!!

 Let’s see an example program…

Output Redirect Example

 This program will run ls -la and write its output to file /tmp/stuff

 Let’s look at output_redirect_example1.c

Example program fragment
... 
pid_t pid = fork();

if (!pid) { // child

 // close stdout

 close(1);

 // open a new file, which gets file descriptor 1 

 FILE ∗file = fopen(”/tmp/stuff”, ”w”);

 // exec the ”ls −la” program 
 char* const arguments[] = {"ls", "-la", NULL}; 
 execv("ls", arguments);

}

...

UNIX Pipes
 A pipe is a simple IPC mechanism between two processes

 One can create a pipe so that process A can write to it and

process B reads from it and B can read from the pipe

 Available in the shell with the | symbol: the output of a process

becomes the input of other(s)

 Just like a file indirection, but to another process’ input stream

 Example: Count the files whose names contain foo but not bar in
the /tmp directory

 List all files in /tmp: find /tmp -type f

 Keep those with foo: grep foo

 Remove those with bar: grep -v bar

 Count the lines that remain: wc -l

Putting everything together: find /tmp -type f | grep foo
| grep -v bar | wc -l

popen(): fork() with a pipe!
 Very convenient library functions are popen() and pclose()

 Sounds like “pipe open” and “pipe close”, but it’s MUCH more than that

 popen() does:

 Creates a (bi-directional) pipe, and we have to specify whether we’re going to
read (“r”) or write (“w”) to it

 Forks and execs a child process (e.g., ”ls -a”)

 Returns the pipe, which is in fact a file (FILE *)

 Both the parent and the child can “talk” through the pipe!

 pclose() does:

 Waits for the child process to complete

 Closes the pipe

 These are implemented with several system calls: fork, waitpid, pipe
(which creates a pipe), close, open, dup

 Re-implementing popen/pclose would be a bit too much here, but let’s
just see an example program that uses it...

popen() / pclose() Example

 This program prints all the output produced by ls -la

 Almost all languages provide something like this: Python’s subprocess module, Java’s

ProcessBuilder class, etc.

 Let’s look at and run popen_example1.c

 And then let’s look at and run popen_example2.c, which opens a pipe to write to

Example program fragment
// fork/exec a child process and get a pipe to READ from

FILE ∗pipe = popen(”/usr/bin/ls −la”, ”r”);

// Get lines of output from the pipe, which is just a FILE ∗,

// until EOF is reached

char buffer[2048]; 
while (fgets(buffer, 2048, pipe)) {

 fprintf(stderr,"LINE: %s", buffer);

}

// Wait for the child process to terminate

pclose(pipe);

Higher-Level IPC?
 What we’ve seen so far are IPC abstractions for

processes to exchange, essentially, bytes

 With that one can do everything of course, since the

bytes can be encoded/interpreted in arbitrary ways

 Often IPC is used to ask another process to do

something for us and send us back the result

 This is conceptually like calling a method/function

on the other process

 A powerful abstraction has been proposed to do this

more easily than with just byte messages: Remote
Procedure Call (RPC)

RPC
 RPC provides a procedure invocation abstraction across

processes (and actually across machines)

 A client invokes a procedure in another process (almost) as

it would invoke it directly itself

 RPC has a lot of usages, of course for client-server

applications (and microkernels!)

 The “magic” is performed through a client stub (one stub for

each RPC):

 Marshal the parameters (converts structured data to bytes)

 Send the data over to the server

 Wait for the server’s answer

 Unmarshal the returned values (convert bytes to structured data)

 A lot of different implementations exist... including in Java

 Java Remote Method Invocation (RMI)

 RPC in Java: Remote Method Invocation
(RMI)

 A process in a JVM can invoke a method of
an object living in another JVM

 Marshalling/Unmarshalling of data is
performed by the JVM

 Each object must be from a class that implements

the java.io.Serializable interface

 RMI hides all the gory details of RPC/IPC

 See this Java RMI Tutorial for more info

https://docs.oracle.com/javase/tutorial/rmi/

Conclusion
 We’ve seen two kinds of mechanisms for processes to

communicate:

 Message Passing: Within the kernel Space

 Shared Memory: Outside the kernel Space

 Both kinds of mechanisms are implemented in all
mainstream OS and many variants and abstractions
exist

 Message Queues, Shared Memory Segments, Files, Signals,
Sockets, Pipes, RPC

 The line between message passing and shared memory
is often blurred by abstractions, and abstractions of one
kind can be implemented on top of abstractions of the
other kind

