
Henri Casanova (henric@hawaii.edu)

ICS332

Operating Systems 

Inter-Process 
Communications 
(IPC)



Communicating Processes?
 So far we have seen independent processes 


 Each process runs code independently

 Parents and aware of their children, and children are aware of their 

parents, but they do not interact 

 Besides the ability to wait for a child to terminate and to kill another process


 But often we need processes to cooperate

 To share information (e.g., access to common data) 

 To speed up computation (e.g., to use multiple cores)

 Because it’s convenient (e.g., some applications are naturally 

implemented as sets of interacting processes) 

 But, processes cannot see each other’s address spaces!

 In general, the means of communication between cooperating 

processes is called Inter-Process Communication (IPC) 



Communication Models
 Process A needs to communicate with Process B
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Message Passing
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Message Passing
 Option #2: Shared Memory
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“belongs” to both processes’s 
address space, so that each 
can read/write at will it it and 
the other can “see” it all



Pros and Cons
 Message Passing


 😀  Simple to implement in the 
kernel


 😡  Limited by kernel size: 
small messages


 😡  One syscall per operation 
(send / receive): high 
overhead


 😡  Cumbersome for users as 
code can be hard to read with 
sends/receives everywhere

 Shared memory

 😡  Not as easy to implement in 

the kernel (stay tuned…)

 😀  Large messages allowed

 😀  Low overhead: a few 

syscalls to set it up, and then no 
kernel involvement thereafter


 😀  Convenient for users (after 
setup, just normal memory 
reads/writes)


 😡  Violates the principle of 
memory protection between 
processes, which can lead to 
horrible bugs



Message Passing 
 All OSes provide several IPC abstractions and API


 And so do many user-level libraries

 In your careers you will have to define abstraction and APIs for all kinds 

of purposes

 Abstraction and API design choices often seem innocuous but can have 

huge impact

 Good choices can lead to awesome success, bad choices can lead to abject 

failures/rewrites

 Making good Abstraction/API choices is hard:


 Sufficiently expressive (can users do anything they might want to do with it?)

 Sufficiently convenient (can users do what they want easily?)

 Not too hard for you to implement/maintain/evolve


 Pedagogic challenge: Conveying to college students how important/
crucial this is, when it all seems like a bunch of pointless nitpicking 


 You wouldn’t believe the number of hours spent daily on minuscule API details in 
the software industry


 Because you haven’t yet experienced the above “snowball effect” of your poorly 
designed Abstractions/API 






POSIX Message Queue
 A standard message passing scheme supported by 

UNIX-like systems are POSIX Message Queues

 There is a message queue “object” that has a name, a 

maximum msg size, and a maximum number of msg in the 
queue


 Both processes create their own queue object using the same 
name (meaning they both have a reference to the same queue)


 The queue object supports send/receive operations

 This Abstraction/API makes several design choices


 One option called “direct communication” would have been “I 
am process A and I send a message to process B”,  which 
requires that process B is created/known when A does the send


 Instead, this API uses “indirect communication” by using a 
message queue object, which is more flexible


 Just for kicks let’s look at a hello world example…



POSIX MQ Hello World

 Let’s look at and run the real/full code in posix_mq_example.c 

 Conceptually this is just like network communication, but within a machine

 There are SO many abstractions/implementations of message passing for all kinds 

of scenarios/purposes, each with slight differences

pid_t pid = fork();


if (pid) { // parent


  mqd_t queue = mq_open(“mq”, O_CREAT | O_WRONLY, 0664, NULL);

  char msg[MSG_SIZE] = “Hello!";

  mq_send(queue, msg, MSG_SIZE, 1);

  waitpid(pid, NULL, 0);

  mq_close(queue);

  mq_unlink(MQ_NAME);


} else { // child


  mqd_t queue = mq_open(“mq”, O_CREAT | O_RDONLY, 0664, NULL);

  char msg[MSG_SIZE];

  mq_receive(queue, msg, MSG_SIZE, NULL);

  mq_close(queue);

  mq_unlink(MQ_NAME);


}



POSIX Shared Memory Segments
 Like there is a POSIX MQ API, there is a POSIX SHM (Shared 

Memory) API

 The abstraction is that of a “shared memory segment” with a 

simple API

 One process can create a shared memory segment

 Multiple processes can then attach it to their address spaces


 Bye bye memory protection

 It’s the processes’ (i.e., the developer’s) responsibility to make sure 

that processes are not stepping on each other’s toes

 Once the setup is done, the OS is not involved


 What happens in shared memory stays in shared memory

 At some point, the shared memory segment is freed by the 

requester

 Let’s look at a Hello World example…



POSIX SHM Hello World

 Let’s look at and run the real/full code in posix_shm_example.c 

int segment_id = shmget(IPC_PRIVATE, 10*sizeof(char), SHM_R | SHM_W);


pid = fork();

if (pid) { // parent

    

  char *shared_memory = (char *)shmat(segment_id, NULL, 0);

  sprintf(shared_memory, "hello");

  waitpid(pid, NULL, 0);

  shmdt(shared_memory);

  shmctl(segment_id, IPC_RMID, NULL);

  

} else { // child

    

  char *shared_memory = (char *)shmat(segment_id, NULL, 0);

  fprintf(stdout,"Child: read '%s' in SHM\n", shared_memory);

  shmdt(shared_memory);


}



POSIX SHM Hello World

 Let’s look at and run the real/full code in posix_shm_example.c 

int segment_id = shmget(IPC_PRIVATE, 10*sizeof(char), SHM_R | SHM_W);


pid = fork();

if (pid) { // parent

    

  char *shared_memory = (char *)shmat(segment_id, NULL, 0);

  sprintf(shared_memory, "hello");

  waitpid(pid, NULL, 0);

  shmdt(shared_memory);

  shmctl(segment_id, IPC_RMID, NULL);

  

} else { // child

    

  char *shared_memory = (char *)shmat(segment_id, NULL, 0);

  fprintf(stdout,"Child: read '%s' in SHM\n", shared_memory);

  shmdt(shared_memory);


}

Note that the child needs the segment_id.  In this 
case, we’re ok because shmget() is called before 
fork(). But if the child was a different program (e.g., 
after an exec()), then the segment_id would need 
to be communicated to the child (e.g., via message 
passing!!)



The IPC Zoo
 There are many IPC abstractions that fall into the message passing or 

the shared memory category, or blur the lines

 Signals, sockets, message queues, pipes, shared memory segments, files, …


 Several abstractions share common characteristics but have a few key 
differences (e.g., a message queue and a socket)


 There is a distinction between the abstraction that’s exposed by the API 
and the implementation of this API


 In fact, many abstractions can be implemented on top of others

 message queues on top of shared memory segments

 message queues on top of files

 message queues on top of sockets

 shared memory segments on top of message passing

 …


 Some implementations are only for IPCs within a machine, some 
implementations are also  for across machines over a network


 Let’s now talk about a very, very commonplace abstraction: pipes



Pipes

 One of the most ancient, yet simple, useful, 
and powerful IPC mechanism provided by 
OSes is typically called pipes 


 We explore this in a programming 
assignment, so it’s a good idea to pay close 
attention 


 But first, let’s take a little detour about UNIX 
file descriptors and output redirection... 



stdin, stdout, stderr
 In UNIX, every process comes with 3 already opened “files”


 Not real files, but in UNIX “everything looks like a file” 

 These files, or streams, are:


 stdin: the standard input stream 

 stdout: the standard output stream

 stderr: the standard error stream 


 You’ve encountered these when developing code (C/C++, Java, Python, 
etc.) 


 e.g., printf writes to stdout

 Each file in UNIX is associated to an integer file descriptor 


 An index into some “this process’ open files” table 

 By convention, the file descriptors for each standard stream are (see /
usr/include/unistd.h): 


 stdin: STDIN_FILENO = 0

 stdout: STDOUT_FILENO = 1

 stderr: STDERR_FILENO = 2 



Re-directing output
 Perhaps some of you have wondered how come something like ls > 
file.txt can work?


 After all, ls has code that looks like: 

        fprintf(stdout, "%s", filename);

 So how can this code magically knows to write to a file instead of to 

stdout???

 This is one of the famous UNIX “tricks”

 In UNIX, when I open a new file, this file gets the first available file 

descriptor number 

 So, if I close stdout, and open a file right after, this file will have file 

descriptor 1

 Therefore, printf() will write to it as if it were stdout 


 Because fprintf(stdout, ...) really means “write to file descriptor 1” 

 And I don’t need to change the code of ls at all!!! 

 Let’s see an example program…



Output Redirect Example

 This program will run ls -la  and write its output to file /tmp/stuff

 Let’s look at output_redirect_example1.c

Example program fragment
... 
pid_t pid = fork(); 

if (!pid) { // child 

  // close stdout

  close(1);

  // open a new file, which gets file descriptor 1 

  FILE ∗file = fopen(”/tmp/stuff”, ”w”);

  // exec the ”ls −la” program 
  char* const arguments[] = {"ls", "-la", NULL}; 
  execv("ls", arguments); 

} 

... 




UNIX Pipes
 A pipe is a simple IPC mechanism between two processes

 One can create a pipe so that process A can write to it and 

process B reads from it and B can read from the pipe 

 Available in the shell with the | symbol: the output of a process 

becomes the input of other(s)

 Just like a file indirection, but to another process’ input stream


 Example: Count the files whose names contain foo but not bar in 
the /tmp directory 


 List all files in /tmp: find /tmp -type f

 Keep those with foo: grep foo

 Remove those with bar: grep -v bar

 Count the lines that remain: wc -l 


Putting everything together:  find /tmp -type f | grep foo 
| grep -v bar | wc -l  



popen(): fork() with a pipe!
 Very convenient library functions are popen() and pclose()

 Sounds like “pipe open” and “pipe close”, but it’s MUCH more than that 

 popen() does:


 Creates a (bi-directional) pipe, and we have to specify whether we’re going to 
read (“r”) or write (“w”) to it 


 Forks and execs a child process (e.g., ”ls -a”)

 Returns the pipe, which is in fact a file (FILE *)

 Both the parent and the child can “talk” through the pipe! 


 pclose() does:

 Waits for the child process to complete

 Closes the pipe 


 These are implemented with several system calls: fork, waitpid, pipe 
(which creates a pipe), close, open, dup 


 Re-implementing popen/pclose would be a bit too much here, but let’s 
just see an example program that uses it... 



popen() / pclose() Example

 This program prints all the output produced by ls -la

 Almost all languages provide something like this: Python’s subprocess module, Java’s 

ProcessBuilder class, etc.

 Let’s look at and run popen_example1.c

 And then let’s look at and run popen_example2.c, which opens a pipe to write to

Example program fragment
// fork/exec a child process and get a pipe to READ from 

FILE ∗pipe = popen(”/usr/bin/ls −la”, ”r”); 


// Get lines of output from the pipe, which is just a FILE ∗,

// until EOF is reached 

char buffer[2048]; 
while (fgets(buffer, 2048, pipe)) { 

  fprintf(stderr,"LINE: %s", buffer); 

}


// Wait for the child process to terminate 

pclose(pipe); 



Higher-Level IPC?
 What we’ve seen so far are IPC abstractions for 

processes to exchange, essentially, bytes

 With that one can do everything of course, since the 

bytes can be encoded/interpreted in arbitrary ways

 Often IPC is used to ask another process to do 

something for us and send us back the result

 This is conceptually like calling a method/function 

on the other process

 A powerful abstraction has been proposed to do this 

more easily than with just byte messages: Remote 
Procedure Call (RPC)



RPC
 RPC provides a procedure invocation abstraction across 

processes (and actually across machines)

 A client invokes a procedure in another process (almost) as 

it would invoke it directly itself

 RPC has a lot of usages, of course for client-server 

applications (and microkernels!)

 The “magic” is performed through a client stub (one stub for 

each RPC): 

 Marshal the parameters (converts structured data to bytes)

 Send the data over to the server

 Wait for the server’s answer

 Unmarshal the returned values (convert bytes to structured data) 


 A lot of different implementations exist... including in Java 



 Java Remote Method Invocation (RMI)

 RPC in Java: Remote Method Invocation 
(RMI)


 A process in a JVM can invoke a method of 
an object living in another JVM


 Marshalling/Unmarshalling of data is 
performed by the JVM 

 Each object must be from a class that implements 

the java.io.Serializable interface

 RMI hides all the gory details of RPC/IPC

 See this Java RMI Tutorial for more info 

https://docs.oracle.com/javase/tutorial/rmi/


Conclusion
 We’ve seen two kinds of mechanisms for processes to 

communicate: 

 Message Passing: Within the kernel Space

 Shared Memory: Outside the kernel Space 


 Both kinds of mechanisms are implemented in all 
mainstream OS and many variants and abstractions 
exist


 Message Queues, Shared Memory Segments, Files, Signals, 
Sockets, Pipes, RPC


 The line between message passing and shared memory 
is often blurred by abstractions, and abstractions of one 
kind can be implemented on top of abstractions of the 
other kind


