
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Synchronization:
Deadlocks

Deadlocks
 The previous set of lecture notes talked about race conditions
 In these lecture notes we talk about another common bug that

can happen in concurrent programs: deadlocks
 This is a very different kind of bug
 Often not as confusing / difficult to deal with as race conditions

 Although this is not always true
 Deadlocks are pretty common

Learning from Mistakes: A Comprehensive Study on Real-World Concurrency Bug
Characteristics, Lu et al., ASPLOS’08

Application Fraction of Concurrency Bugs
that are Deadlocks

MySQL (database server) 8%
Apache (web server) 23%
Mozilla (web browser) 28%
OpenOffice (office suite) 25%
Overall 29%

https://www.cs.columbia.edu/~junfeng/09fa-e6998/papers/concurrency-bugs.pdf
https://www.cs.columbia.edu/~junfeng/09fa-e6998/papers/concurrency-bugs.pdf

Deadlocks
 The name is inspired from real-life situations
 Early 20th Century Kansas legislature proposed bill: ”When two trains

approach each other at a crossing, both shall come to a full stop and
neither shall start up again until the other has gone”

 Likely not true

A video of this happening

http://www.apple.com
https://www.reddit.com/r/Wellthatsucks/comments/7xqbku/traffic_jam/?st=JDOXNE12&sh=511545d2

The Classic 2-Lock Example
Thread #1

. . .
lock1.lock();
. . .
lock2.lock();
. . .

Thread #2
. . .
lock2.lock();
. . .
lock1.lock();
. . .

The Classic 2-Lock Example

One possible Execution timeline
. . .

lock1.lock(); // Thread #1 acquires lock #1

<context switch to Thread #2>

. . .

lock2.lock(); // Thread #2 acquires lock #2

. . .

lock1.lock(); // Thread #2 BLOCKS because lock #1 is taken

<context switch to Thread #1>

. . .

lock2.lock(); // Thread #1 BLOCKS because lock #2 is taken

Both threads are waiting on each other: they are deadlocked

Thread #1
. . .
lock1.lock();
. . .
lock2.lock();
. . .

Thread #2
. . .
lock2.lock();
. . .
lock1.lock();
. . .

Deadlock
Meme

Defining a Deadlock
 The deadlock problem can be formalized and generalized
 We have a system with Resources and Processes
 The Resources:

 There can be resources of types: R1, R2, . . ., Rm
 There are multiple resource of each type: e.g., 3 NICs, 4 disks

 The Processes (or Threads):
 P1, P2, ..., Pn
 Each process can:

 Request a resource of a given type and block/wait until one resource instance of that
type becomes available

 Use a resource
 Release a resource

 In the previous slides we have two processes, P1 and P2 (2 threads),
two resource types R1 (one lock, which corresponds to some resource),
and R2 (another lock, which corresponds to another resource)

 These “resources” could be data structures

Deadlock State
 A deadlock state happens if every process is waiting for a resource

instance that is being held by another process
 Three necessary conditions for a deadlock to occur:

 Mutual exclusion: At least one resource is non-shareable: at most one
process at a time can use it

 In our example: the locks are mutually exclusive
 No preemption: Resources cannot be forcibly removed from processes that

are holding them
 In our example: only the thread holding a lock can release it

 Circular wait: There exists a set {P0,P1,...,Pp} of waiting processes such
that (∀i ∈ {0, 1, ...p − 1}) Pi is waiting for a resource held by Pi +1 and Pp is
waiting for a resource held by P0

 i.e., There is a circular chain of processes such that each process holds one or
more resources that are being requested by the next process in the chain

 In our example: P1 has lock1 and needs lock2, and P2 has lock2 and needs lock1

 If your program is in a state that meets all three conditions, then it
may deadlock, otherwise you’re safe

Resource Allocation Graph
 Describing the system can be done precisely and easily with a

resource-allocation-request graph, where
 The set of vertices is made of:

 The set of processes {P0, P1, ..., Pn}, and
 The set of resource types {R0, R1, ..., Rm}

 Each resource instance is a black dot
 The set of directed edges is made of:

 Request edges where a request edge is built from a process Pi to a
resource Rj if Pi has requested a resource of type Rj

 Assignment edges where an assignment edge is built from an instance
of a resource type Rj to a process Pi if Pi holds a resource instance of
type Rj

 Note: if a request can be fulfilled, the assignment edge replaces
immediately the request edge

 Let’s see it on a picture…

Example Graph

Example from Operating Systems Concepts textbook, Silberschatz et al.

P1

P2

P3

R1

R2

R3

R4

Cycles in the Graph
 Theorem:

 If the resource-allocation-request graph contains no
(directed) cycle, then there is no deadlock in the system

 If the graph contains a cycle then there may be a
deadlock

 If there is only one resource instance (black dot)
per resource type then we have a
Stronger Theorem:
 The existence of a cycle is a necessary and sufficient

condition for the existence of a deadlock
 Let’s draw the graph for our 2-thread/2-lock

examples…..

2-Thread/2-Lock examples

Thread
#1

Thread
#2

Lock #1

Lock #2

Thread #1
. . .
lock1.lock();
. . .
lock2.lock();
. . .

Thread #2
. . .
lock2.lock();
. . .
lock1.lock();
. . .

2-Thread/2-Lock examples

Thread
#1

Thread
#2

Lock #1

Lock #2

Thread #1
. . .
lock1.lock();
. . .
lock2.lock();
. . .

Thread #2
. . .
lock2.lock();
. . .
lock1.lock();
. . .

2-Thread/2-Lock examples

Thread
#1

Thread
#2

Lock #1

Lock #2

Thread #1
. . .
lock1.lock();
. . .
lock2.lock();
. . .

Thread #2
. . .
lock2.lock();
. . .
lock1.lock();
. . .

2-Thread/2-Lock examples

Thread
#1

Thread
#2

Lock #1

Lock #2

Thread #1
. . .
lock1.lock();
. . .
lock2.lock();
. . .

Thread #2
. . .
lock2.lock();
. . .
lock1.lock();
. . .

2-Thread/2-Lock examples

Thread
#1

Thread
#2

Lock #1

Lock #2

Thread #1
. . .
lock1.lock();
. . .
lock2.lock();
. . .

Thread #2
. . .
lock2.lock();
. . .
lock1.lock();
. . .

2-Thread/2-Lock examples

Thread
#1

Thread
#2

Lock #1

Lock #2

Thread #1
. . .
lock1.lock();
. . .
lock2.lock();
. . .

Thread #2
. . .
lock2.lock();
. . .
lock1.lock();
. . .

Cycle

Example Graph: Cycle?

Example from Operating Systems Concepts textbook, Silberschatz et al.

P1

P2

P3

R1

R2

R3

R4

Example Graph: Cycle?

Example from Operating Systems Concepts textbook, Silberschatz et al.

P1

P2

P3

R1

R2

R3

R4

The blue
edges form
a cycle

Example Graph: Cycle?

Example from Operating Systems Concepts textbook, Silberschatz et al.

P1

P2

P3

R1

R2

R3

R4

The blue
edges form
a cycle

But are we
deadlocked?

Are we Deadlocked?
 In the previous example we have a cycle, so there may

be a deadlock
 Because there are multiple resources for some resource types

 We have a deadlock if no process involved in the cycle
can make progress

 We can check this as follows:
 Each process that has all the resources it wants will eventually

move on and release its resources
 So we can remove its incoming resource allocation edges, and

perhaps transform some resource request edges into resource
allocation edges

 We keep going…
 Let’s look at the example again…

Example Graph: Cycle?

Example from Operating Systems Concepts textbook, Silberschatz et al.

P1

P2

P3

R1

R2

R3

R4

The blue edges
form a cycle

No process can
make any progress
due to at least one
outgoing resource
request edge
We have a
deadlock

Another example

Example from Operating Systems Concepts textbook, Silberschatz et al.

P1

P2

P3

R1

R2
P4

Another example

Example from Operating Systems Concepts textbook, Silberschatz et al.

P1

P2

P3

R1

R2
P4

Cycle

Another example

Example from Operating Systems Concepts textbook, Silberschatz et al.

P1

P2

P3

R1

R2
P4

Cycle
P2 and P4 can do their
work, eventually they’ll
release one resource,
which means P1 and
P3 will be able to work.
No deadlock….

Another example

Example from Operating Systems Concepts textbook, Silberschatz et al.

P1

P2

P3

R1

R2
P4

P2 terminates, P1 gets
its R1 resources

Another example

Example from Operating Systems Concepts textbook, Silberschatz et al.

P1

P2

P3

R1

R2
P4

P1 terminates, P3 gets
its R2 resource. No
more resource request
edges.

In-Class Exercise
 9 locks
 2 threads, each running:

while (true) {
 for (i=0;i < M; i++) {
 <acquire one lock>
 }

 // do something useful

 for (i=0;i < M; i++) {
 <release one lock>
 }
}

Question: What is the largest value
of M that leads to no deadlock?

P1 P2M? M?

In-Class Exercise
 9 locks
 2 threads, each running:

while (true) {
 for (i=0;i < M; i++) {
 <acquire one lock>
 }

 // do something useful

 for (i=0;i < M; i++) {
 <release one lock>
 }
}

Answer: M=5
If both threads split the locks 4-4, which is the most “dangerous”
situation, then one of them will get its 5th and last lock, and we’re ok

P1 P2M? M?

In-Class Exercise
 9 locks
 2 threads, each running:

while (true) {
 for (i=0;i < M; i++) {
 <acquire one lock>
 }

 // do something useful

 for (i=0;i < M; i++) {
 <release one lock>
 }
}

Deadlock for M=6
One thread holds 4 locks, the other holds 5 locks, and we’re stuck

P1 P2M? M?

Strategies Against Deadlocks

 Prevention — Just build all programs so that at
least one of the previous 3 necessary conditions
can never be true, a by design approach

 Avoidance — If we are aware of the resources
that the processes/threads will use, we could
avoid deadlocks, more of a watchdog approach

 Detection and recovery — Use algorithms to
detect whether a deadlock has happened and try
to recover: a let’s fix it approach

Deadlock Prevention (“by
design”)
 Removing necessary condition #1 (Mutual Exclusion: “At least one resource

is non-shareable”)
 Non-shareable resources are too useful to disallow them!
 A critical section protected by locks, a file open for writing, etc.

 Removing necessary condition #2 (No Preemption: “Resources cannot be
forcibly removed”)

 But how do we even program in an environment in which an acquired resource can
be taken away at any time?

 Removing necessary condition #3 (Circular Wait)
 This can be done, e.g., by imposing an ordering on the resources and force

processes to acquire them in that order
 FreeBSD provides an order-verifier for locks (called witness)
 Lock acquisition order is recorded, and locking locks out of order causes errors/

warnings
 Useful, but not feasible for all programs

 Bottom Line: Deadlock prevention is appealing, but isn’t done much at all
in practice, save for a few programs that use ordered locks

Deadlock Avoidance
(“watchdog”)
 One approach:

 The OS maintain the resource-allocation-request graph at all times
 Whenever a process requests a resource, the OS determines whether

giving that resource to the process would create a cycle in the graph
 If it would, then reject the request, otherwise, add an edge
 In a nutshell: never add an edge that would create a cycle
 Detecting a cycle in a graph with n vertices is usually O(n2) (i.e.,

relatively expensive)
 This approach is sometimes known as a “Graph-based Avoidance

Algorithm”
 There are other approaches (e.g., see “Deadlock Avoidance via

Scheduling” in OSTEP if you’re curious)

 Bottom Line: Deadlock avoidance is an interesting idea, but it
isn’t really done in practice

Deadlock Detection/Recovery (“let’s fix it”)

 Detection:
 Use an algorithm to determine whether we’re in a deadlock state
 If only one resource (black dot) per resource type, easy

 Build the resource-allocation-request graph, and if it has a cycle, we have a
deadlock

 If more than one resource per resource type, harder
 Use the Banker’s Algorithm

 This takes time, so we can only do this occasionally
 Recovery:

 Option #1: Process termination
 Option A: Kill all deadlocked processes
 Option B: Kill one deadlocked process at a time until no deadlock
 Dangerous program behaviors are then likely :(

 Option #2: Resource preemption
 Select a resource to be preempted
 Rollback the process that has it (Simplest: Restart the process from scratch;

Harder: “Go back till before the lock was acquired”)
 Bottom Line: these are interesting ideas, but no OS does them

So what do OSes do?
 What do OSes do to help us with deadlocks???
 Apparently we can live with this!?!

 Eventually, but very rarely, the deadlock may snowball until
the system no longer functions and requires manual
intervention (a reboot)

 But typically they remain confined to a program
 Deadlocks occur frequently-ish, and you get no help besides

“make sure your code don’t have deadlocks”

 In the end there is no good one-size-fits-all solution, as there
is no telling why kind of concurrent applications people will be
developing

So what do OSes do?
 What do OSes do to help us with deadlocks??? NOTHING
 Apparently we can live with this!?!

 Eventually, but very rarely, the deadlock may snowball until
the system no longer functions and requires manual
intervention (a reboot)

 But typically they remain confined to a program
 Deadlocks occur frequently-ish, and you get no help besides

“make sure your code doesn’t have deadlocks”

 In the end there is no good one-size-fits-all solution, as there
is no telling what kind of concurrent applications people will
be developing

Priority Inversion
 A famous “OS and Deadlocks” problem

 Assume that there are 3 processes with different priorities: L < M < H
 H needs a resource currently held by L
 If M becomes runnable, it will preempt L from running
 Therefore L will never release the resource
 And therefore H will never run
 M has indirectly set the priority of H to the priority of L (since H has to wait

for L to release the resource)
 This is called priority inversion

 Lookup ”Mars Pathfinder priority inversion” for an interesting anecdote
 Solution → priority inheritance: If a process requesting a resource

has higher priority than the process locking the resource, the
process locking the resource is temporarily given the higher priority.

 This is one thing that some OSes (real-time OSes in particular)
implement for you!

Conclusion

 Deadlocks happen when processes/threads wait
indefinitely on each other to release resources
(e.g., locks)

 Three methods to deal with deadlocks
 (i) Prevention
 (ii) Avoidance
 (iii) Detection/Recovery

 None of them are used much in practice typically,
and OSes do nothing

 Bottom line: just be smart and develop software
that does not deadlock

