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Deadlocks
 The previous set of lecture notes talked about race conditions 
 In these lecture notes we talk about another common bug that 

can happen in concurrent programs: deadlocks 
 This is a very different kind of bug 
 Often not as confusing / difficult to deal with as race conditions 

 Although this is not always true  
 Deadlocks are pretty common

Learning from Mistakes: A Comprehensive Study on Real-World Concurrency Bug 
Characteristics, Lu et al., ASPLOS’08

Application Fraction of Concurrency Bugs  
that are Deadlocks

MySQL (database server) 8%
Apache (web server) 23%
Mozilla (web browser) 28%
OpenOffice (office suite) 25%
Overall 29%

https://www.cs.columbia.edu/~junfeng/09fa-e6998/papers/concurrency-bugs.pdf
https://www.cs.columbia.edu/~junfeng/09fa-e6998/papers/concurrency-bugs.pdf


Deadlocks
 The name is inspired from real-life situations  
 Early 20th Century Kansas legislature proposed bill: ”When two trains 

approach each other at a crossing, both shall come to a full stop and 
neither shall start up again until the other has gone”  

 Likely not true

A video of this happening

http://www.apple.com
https://www.reddit.com/r/Wellthatsucks/comments/7xqbku/traffic_jam/?st=JDOXNE12&sh=511545d2


The Classic 2-Lock Example
Thread #1

. . . 
lock1.lock(); 
. . . 
lock2.lock(); 
. . .

Thread #2
. . . 
lock2.lock(); 
. . . 
lock1.lock(); 
. . .



The Classic 2-Lock Example

One possible Execution timeline 
. . . 

lock1.lock(); // Thread #1 acquires lock #1 

<context switch to Thread #2> 

. . . 

lock2.lock(); // Thread #2 acquires lock #2 

. . . 

lock1.lock(); // Thread #2 BLOCKS because lock #1 is taken 

<context switch to Thread #1> 

. . . 

lock2.lock(); // Thread #1 BLOCKS because lock #2 is taken 

Both threads are waiting on each other: they are deadlocked 

Thread #1
. . . 
lock1.lock(); 
. . . 
lock2.lock(); 
. . .

Thread #2
. . . 
lock2.lock(); 
. . . 
lock1.lock(); 
. . .



Deadlock 
Meme



Defining a Deadlock
 The deadlock problem can be formalized and generalized 
 We have a system with Resources and Processes 
 The Resources:  

 There can be resources of types: R1, R2, . . ., Rm 
 There are multiple resource of each type: e.g., 3 NICs, 4 disks  

 The Processes (or Threads):  
 P1, P2, ..., Pn 
 Each process can:  

 Request a resource of a given type and block/wait until one resource instance of that 
type becomes available 

 Use a resource 
 Release a resource  

 In the previous slides we have two processes, P1 and P2 (2 threads), 
two resource types R1 (one lock, which corresponds to some resource), 
and R2 (another lock, which corresponds to another resource)  

 These “resources” could be data structures 



Deadlock State
 A deadlock state happens if every process is waiting for a resource 

instance that is being held by another process  
 Three necessary conditions for a deadlock to occur:  

 Mutual exclusion: At least one resource is non-shareable: at most one 
process at a time can use it  

 In our example: the locks are mutually exclusive 
 No preemption: Resources cannot be forcibly removed from processes that 

are holding them  
 In our example: only the thread holding a lock can release it 

 Circular wait: There exists a set {P0,P1,...,Pp} of waiting processes such 
that (∀i ∈ {0, 1, ...p − 1}) Pi is waiting for a resource held by Pi +1 and Pp is 
waiting for a resource held by P0  

 i.e., There is a circular chain of processes such that each process holds one or 
more resources that are being requested by the next process in the chain 

 In our example: P1 has lock1 and needs lock2, and P2 has lock2 and needs lock1  

 If your program is in a state that meets all three conditions, then it 
may deadlock, otherwise you’re safe



Resource Allocation Graph
 Describing the system can be done precisely and easily with a 

resource-allocation-request graph, where 
 The set of vertices is made of:  

 The set of processes {P0, P1, ..., Pn}, and 
 The set of resource types {R0, R1, ..., Rm}  

 Each resource instance is a black dot  
 The set of directed edges is made of: 

 Request edges where a request edge is built from a process Pi to a 
resource Rj if Pi has requested a resource of type Rj 

 Assignment edges where an assignment edge is built from an instance 
of a resource type Rj to a process Pi if Pi holds a resource instance of 
type Rj  

 Note: if a request can be fulfilled, the assignment edge replaces 
immediately the request edge 

 Let’s see it on a picture…



Example Graph

Example from Operating Systems Concepts textbook, Silberschatz et al.
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Cycles in the Graph
 Theorem: 

 If the resource-allocation-request graph contains no 
(directed) cycle, then there is no deadlock in the system  

 If the graph contains a cycle then there may be a 
deadlock  

 If there is only one resource instance (black dot) 
per resource type then we have a               
Stronger Theorem: 
 The existence of a cycle is a necessary and sufficient 

condition for the existence of a deadlock 
 Let’s draw the graph for our 2-thread/2-lock 

examples….. 



2-Thread/2-Lock examples

Thread 
#1

Thread 
#2

Lock #1

Lock #2

Thread #1
. . . 
lock1.lock(); 
. . . 
lock2.lock(); 
. . .

Thread #2
. . . 
lock2.lock(); 
. . . 
lock1.lock(); 
. . .
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2-Thread/2-Lock examples
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Cycle



Example Graph: Cycle?

Example from Operating Systems Concepts textbook, Silberschatz et al.
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Example Graph: Cycle?

Example from Operating Systems Concepts textbook, Silberschatz et al.
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The blue 
edges form 
a cycle

But are we 
deadlocked?



Are we Deadlocked?
 In the previous example we have a cycle, so there may 

be a deadlock 
 Because there are multiple resources for some resource types 

 We have a deadlock if no process involved in the cycle 
can make progress 

 We can check this as follows: 
 Each process that has all the resources it wants will eventually 

move on and release its resources 
 So we can remove its incoming resource allocation edges, and 

perhaps transform some resource request edges into resource 
allocation edges 

 We keep going… 
 Let’s look at the example again…



Example Graph: Cycle?

Example from Operating Systems Concepts textbook, Silberschatz et al.
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The blue edges 
form a cycle

No process can 
make any progress 
due to at least one 
outgoing resource 
request edge 
We have a 
deadlock
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Example from Operating Systems Concepts textbook, Silberschatz et al.
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Another example

Example from Operating Systems Concepts textbook, Silberschatz et al.
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R2
P4

Cycle
P2 and P4 can do their 
work, eventually they’ll 
release one resource, 
which means P1 and 
P3 will be able to work. 
No deadlock….



Another example

Example from Operating Systems Concepts textbook, Silberschatz et al.
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its R1 resources



Another example

Example from Operating Systems Concepts textbook, Silberschatz et al.

P1

P2

P3

R1

R2
P4

P1 terminates, P3 gets 
its R2 resource. No 
more resource request 
edges.



In-Class Exercise
 9 locks 
 2 threads, each running:

while (true) { 
  for (i=0;i < M; i++) {  
    <acquire one lock>  
  }  

  // do something useful 

  for (i=0;i < M; i++) {  
    <release one lock>  
  } 
}  

Question: What is the largest value 
of M that leads to no deadlock? 

P1 P2M? M?



In-Class Exercise
 9 locks 
 2 threads, each running:

while (true) { 
  for (i=0;i < M; i++) {  
    <acquire one lock>  
  }  

  // do something useful 

  for (i=0;i < M; i++) {  
    <release one lock>  
  } 
}  

Answer: M=5 
If both threads split the locks 4-4, which is the most “dangerous” 
situation, then one of them will get its 5th and last lock, and we’re ok

P1 P2M? M?



In-Class Exercise
 9 locks 
 2 threads, each running:

while (true) { 
  for (i=0;i < M; i++) {  
    <acquire one lock>  
  }  

  // do something useful 

  for (i=0;i < M; i++) {  
    <release one lock>  
  } 
}  

Deadlock for M=6 
One thread holds 4 locks, the other holds 5 locks, and we’re stuck

P1 P2M? M?



Strategies Against Deadlocks

 Prevention — Just build all programs so that at 
least one of the previous 3 necessary conditions 
can never be true, a by design approach 

 Avoidance — If we are aware of the resources 
that the processes/threads will use, we could 
avoid deadlocks, more of a watchdog approach 

 Detection and recovery — Use algorithms to 
detect whether a deadlock has happened and try 
to recover: a let’s fix it approach 



Deadlock Prevention (“by 
design”)
 Removing necessary condition #1 (Mutual Exclusion: “At least one resource 

is non-shareable”)  
 Non-shareable resources are too useful to disallow them! 
 A critical section protected by locks, a file open for writing, etc.  

 Removing necessary condition #2 (No Preemption: “Resources cannot be 
forcibly removed”)  

 But how do we even program in an environment in which an acquired resource can 
be taken away at any time?  

 Removing necessary condition #3 (Circular Wait)  
 This can be done, e.g., by imposing an ordering on the resources and force 

processes to acquire them in that order 
 FreeBSD provides an order-verifier for locks (called witness)  
 Lock acquisition order is recorded, and locking locks out of order causes errors/

warnings 
 Useful, but not feasible for all programs 

 Bottom Line: Deadlock prevention is appealing, but isn’t done much at all 
in practice, save for a few programs that use ordered locks



Deadlock Avoidance 
(“watchdog”)
 One approach:  

 The OS maintain the resource-allocation-request graph at all times 
 Whenever a process requests a resource, the OS determines whether 

giving that resource to the process would create a cycle in the graph 
 If it would, then reject the request, otherwise, add an edge 
 In a nutshell: never add an edge that would create a cycle  
 Detecting a cycle in a graph with n vertices is usually O(n2) (i.e., 

relatively expensive)  
 This approach is sometimes known as a “Graph-based Avoidance 

Algorithm”  
 There are other approaches (e.g., see “Deadlock Avoidance via 

Scheduling” in OSTEP if you’re curious) 

 Bottom Line: Deadlock avoidance is an interesting idea, but it 
isn’t really done in practice 



Deadlock Detection/Recovery (“let’s fix it”)

 Detection:  
 Use an algorithm to determine whether we’re in a deadlock state 
 If only one resource (black dot) per resource type, easy  

 Build the resource-allocation-request graph, and if it has a cycle, we have a 
deadlock 

 If more than one resource per resource type, harder  
 Use the Banker’s Algorithm 

 This takes time, so we can only do this occasionally  
 Recovery:  

 Option #1: Process termination 
 Option A: Kill all deadlocked processes  
 Option B: Kill one deadlocked process at a time until no deadlock  
 Dangerous program behaviors are then likely :( 

 Option #2: Resource preemption  
 Select a resource to be preempted 
 Rollback the process that has it (Simplest: Restart the process from scratch; 

Harder: “Go back till before the lock was acquired”) 
 Bottom Line: these are interesting ideas, but no OS does them 



So what do OSes do?
 What do OSes do to help us with deadlocks???  
 Apparently we can live with this!?!  

 Eventually, but very rarely, the deadlock may snowball until 
the system no longer functions and requires manual 
intervention (a reboot)  

 But typically they remain confined to a program  
 Deadlocks occur frequently-ish, and you get no help besides 

“make sure your code don’t have deadlocks”  

 In the end there is no good one-size-fits-all solution, as there 
is no telling why kind of concurrent applications people will be 
developing



So what do OSes do?
 What do OSes do to help us with deadlocks???  NOTHING 
 Apparently we can live with this!?!  

 Eventually, but very rarely, the deadlock may snowball until 
the system no longer functions and requires manual 
intervention (a reboot)  

 But typically they remain confined to a program  
 Deadlocks occur frequently-ish, and you get no help besides 

“make sure your code doesn’t have deadlocks”  

 In the end there is no good one-size-fits-all solution, as there 
is no telling what kind of concurrent applications people will 
be developing



Priority Inversion
 A famous “OS and Deadlocks” problem  

 Assume that there are 3 processes with different priorities: L < M < H 
 H needs a resource currently held by L 
 If M becomes runnable, it will preempt L from running 
 Therefore L will never release the resource  
 And therefore H will never run 
 M has indirectly set the priority of H to the priority of L (since H has to wait 

for L to release the resource)  
 This is called priority inversion 

 Lookup ”Mars Pathfinder priority inversion” for an interesting anecdote  
 Solution → priority inheritance: If a process requesting a resource 

has higher priority than the process locking the resource, the 
process locking the resource is temporarily given the higher priority.  

 This is one thing that some OSes (real-time OSes in particular) 
implement for you! 



Conclusion

 Deadlocks happen when processes/threads wait 
indefinitely on each other to release resources 
(e.g., locks) 

 Three methods to deal with deadlocks  
 (i) Prevention 
 (ii) Avoidance 
 (iii) Detection/Recovery  

 None of them are used much in practice typically, 
and OSes do nothing 

 Bottom line: just be smart and develop software 
that does not deadlock 


