
Henri Casanova (henric@hawaii.edu)

ICS332

Operating Systems

Synchronization:
Race Conditions

Context
 This whole module is a mere introduction to a large, complicated,

and fundamental topic

 Most software is multi-threaded at some level, and threads need

to “synchronize”

 The term “synchronize” is a bit confusing

 In this set of lecture notes it means “make sure threads don’t step on

each other’s toes in RAM to ensure program correctness”

 Therefore, this topic is relevant to most software

 And it’s not easy!

 Full hands-on experience in ICS 432

 We’ll only go through a subset of the material in OSTEP

 26.3, 26.4, 26.5

 28.1, 28.8, 28.12, 28.14

False Concurrency on One Core

time

on
e

co
re

 We now know that OSes use context-switching to alternate
between processes/threads on a core

 This is known as False Concurrency

 Example (gaps = context-switching overhead):

 Provides the illusion of concurrency to a human because
time quanta are short

 Increases core utilization because when a process/thread
does I/O, the core is used by another process/thread

True Concurrency on Multiple Cores

 False concurrency within each core

 True concurrency across cores

 E.g., the yellow and red threads sometimes experience true
concurrency

time

co
re

 #
1

time

co
re

 #
2

True/False Concurrency
 The programmer should not have to care/know whether concurrency will

be true or false

 A concurrent program with 10 threads will work on a single-core processor, a

quad-core processor, a 32-core processor, etc.

 Typically you don’t know on what kind of computer the program will run anyway

 A multi-threaded program will reach higher interactivity with True and/or
False concurrency

 A multi-threaded program will reach higher performance only with True
concurrency

 Concurrency is not only about cores: there can be concurrency
between any two hardware resources

 e.g., between the CPU and the Disk (a Web browser can have a thread that
reads data from the disk and a thread that renders that data)

 A “let’s just add threads and things will be more interactive and faster”
approach often works

 The OS makes it all transparent because it virtualizes the CPU

The main Pitfall of Concurrency
 “My machine is multicore, and I’ve learned how to

program with threads! Let me implement a program that
counts up to some value faster with more threads!!!”

 As usual we start with something really useless :)

 One global variable: a counter that stores a value

 numThreads threads that each increment the counter

by one over numIterations iterations

 Let’s look at the code in CounterTestV1.java

 Let’s run this code for:

 1, 2, or many threads, small and large values of
numIterations

 What do we observe?

Understanding the Pitfall
 High-level programming languages (anything but assembly, and

even not all assembly languages) hide the complexity of operations
performed at the CPU level

 In C, incrementing a 4-byte value in RAM:

int *x;

*x += 1;

 Translates in (NASM) x86 assembly language to:

mov eax, [x] // set register EAX to *x

inc eax // increment register EAX 
mov [x], eax // set *x to the value of EAX

 In MIPS-like assembly, this would be like:

lw $t0, (x) // set register t0 to *x

addi $t0, $t0, 1 // increment register t0 
sw $t0, (x) // set *x to the value of t0

Understanding the Pitfall
 High-level programming languages (anything but assembly, and

even not all assembly languages) hide the complexity of operations
performed at the CPU level

 In C, incrementing a 4-byte value in RAM:

int *x;

*x += 1;

 Translates in (NASM) x86 assembly language to:

mov eax, [x] // set register EAX to *x

inc eax // increment register EAX 
mov [x], eax // set *x to the value of EAX

 In MIPS-like assembly, this would be like:

lw $t0, (x) // set register t0 to *x

addi $t0, $t0, 1 // increment register t0 
sw $t0, (x) // set *x to the value of t0

 The point: x++ is done with 3 instructions

Understanding the Pitfall: 1 thread
 Execution with 1 thread

Instruction Value of EAX Value at [x]
Undefined 0

load [x] into reg 0 0

increment reg 1 0

store reg into [x] 1 1

load [x] into reg 1 1

increment reg 2 1

store reg into [x] 2 2

load [x] into reg 2 2

increment reg 3 2

store reg into [x] 3 3

load [x] into reg 3 3

increment reg 4 3

store reg into [x] 4 4

Understanding the Pitfall: 2 threads
 Let’s play the role of the OS scheduler with a “blue” thread and a “red” thread

Instruction Value of reg Value at [x]

Undefined 0

load [x] into reg 0 0

increment reg 1 0

store reg into [x] 1 1

load [x] into reg 1 1

Context Switch from blue to red

Saved blue registers: reg = 1, PC = …, etc.

Restored red registers: reg = undef, PC = …, etc

Undefined 1

load [x] into reg 1 1

increment reg 2 1

store reg into [x] 2 2

Context Switch from red to blue

Saved red registers: reg = 2, PC = …, etc.

Restored blue registers: reg = 1, PC = …, etc

1 2

increment reg 2 2

store reg into [x] 2 2

☠ This is wrong ☠

We executed 3 INCREMENT
instructions

We executed 3 STORE instructions 
(just like the 1-thread execution) 

Yet our final value in RAM is 2
and not 3!!

Just because the OS did Context
Switch #2 at the “wrong” time!

Race Condition
 The behavior on the previous slide is called a Race Condition

 Which means we have a concurrency bug

 In this case the bug is called a lost update

 The outcome depends on when context-switches occur

 When running our Java code, we witnessed many lost updates for

large values of numIterations

 But:

 The bug manifests itself differently for each execution

 The bug may manifest itself very rarely for small values of n, and yet the

program is still buggy!

 Such non-deterministic bugs make concurrent programming difficult

 The whole “I tested the code 10,000 times, and then the user got a bug”

problem...

Lost Update Example
 In general when a thread does x+=a and an another

does x+=b three things can happen:

 Both updates go through and x is incremented by a+b

 The x+=a update is lost and x is incremented only by a

 The x+=b update is lost and x is incremented only by b

 Example:

 Two variables: a and b, both initially set to 1

 Thread #1: a+=1; b=a+2;

 Thread #2: a-=1;

 Once both threads are finished, the values of a and b are

printed

 Question: What are the possible final values?

Lost Update Example
 First: Come up with possible interleaving of the

instructions assuming that each instruction is executed
entirely without being interrupted

// a=1, b=1

a-=1;

a+=1;

b=a+2;

// a=1, b=3

// a=1, b=1

a+=1;

a-=1;

b=a+2;

// a=1, b=3

// a=1, b=1

a+=1;

b=a+2;

a-=1;

// a=1, b=4

 Two possible outcomes: (a=1,b=3) and
(a=1,b=4)

How do we fix this?

 Clearly, if we “just add threads” to a sequential
program and have threads read/write the
same memory locations, we’ll be in trouble

 Yet, we want them to read/write the same
memory locations for them to co-operate

 That’s the whole point of having threads

 We need a new programming concept that
ensures that threads do not “step on each
other’s toes”

 This concept is called a critical section

Critical Section
 A critical section is a region of

code in which only one thread can
be at a time

 If a thread is already executing code in
the critical section then all other threads
are “blocked” before being allowed to
enter the critical section

 Only one thread will be allowed to enter
when a thread leaves the critical
section

 A critical section does not have to be
a contiguous section of code

 In the example here, we have a 3-zone
critical section (displayed in red)

 Real-life metaphor: a public bathroom

Critical Section
 A source code can have multiple critical

sections

 And they can overlap (not shown in this

example)

 Just like having multiple bathrooms

 Common misconception: A critical section
corresponds to a variable

 This is incorrect: a critical section corresponds
to section(s) of code (i.e., in the text segment)

 When people say “we need to protect variable
x from race conditions” it really means “we
need to put all the code that updates variables
x into a critical section”

 If software design is good, this shouldn’t be too
much work

Example
 Consider this code fragment, where threads can

call functions f() and g() at any time
int a = 0;

int b = 2;

int x = 100;

void f() {

 for (int i=0; i < 1000; i++) {

 a++;

 }

}

void g() {

 b++;

 x--;

}

Example
 Consider this code fragment, where threads can

call functions f() and g() at any time
int a = 0;

int b = 2;

int x = 100;

void f() {

 for (int i=0; i < 1000; i++) {

 a++;

 }

}

void g() {

 b++;

 x--;

}

 One brute-force
solution is to put
everything into a
critical section

 Bad idea: no
concurrency
anymore!!

Example
 Consider this code fragment, where threads can

call functions f() and g() at any time
int a = 0;

int b = 2;

int x = 100;

void f() {

 for (int i=0; i < 1000; i++) {

 a++;

 }

}

void g() {

 b++;

 x--;

}

 Some of the code in
the critical section is
not “critical”
because it’s about
variables local to a
thread, so we can
make the critical
section smaller,
which is better for
concurrency

Example
 Consider this code fragment, where threads can

call functions f() and g() at any time
int a = 0;

int b = 2;

int x = 100;

void f() {

 for (int i=0; i < 1000; i++) {

 a++;

 }

}

void g() {

 b++;

 x--;

}

 We should also
use different
critical sections for
lines of codes that
update different
variables

 This maximizes
concurrency

Critical Section Duration
 You should always try to make critical sections as short as possible

 Not in number of lines of code, but in time to run these lines

 Long critical sections: only one thread can do work for a while, so

we have reduced opportunities for concurrent execution

 And thus reduced interactivity and/or performance

 Extreme situation: put the whole code in a critical critical section

 Guaranteed to have no race condition, but only one thread can run at a

time

 No concurrency

 Instead, one should use possibly many very short critical sections
(each protected by a different lock), so that many threads can do
useful work simultaneously

Critical Section
 Formally there are three requirements to execute critical

sections:

 Mutual Exclusion: If a thread is executing in the critical section,

then no other thread can be executing in it

 Progress: If a thread wants to enter the critical section, it will

enter it at some point in the future

 Bounded Waiting: Once a thread has declared intent to enter the

critical section, there should be a bound on the number of
threads that can enter the critical section before it

 Note that there is no assumption regarding the elapsed
time spent by each involved thread in the critical section

 These are theoretical conditions: Programming
Languages, OSes, Hardware are in charge of the
“implementation details”

The Kernel and Race Conditions
 Consider a process that places a system call

 It begins running kernel code

 And then a context switch happens!

 Modern kernels allow the above (they’re called preemptive kernels)

 But that means we can have race conditions in the kernel!!

 e.g., the list of open files is some data structure with a size variable. Say that right
now 10 files are opened. One thread is opening a file, and is context-switched out
right before storing value 11 into size. Another thread closes a file and updates
size to 9. The first thread is context switched back in and sets size to 11. We have
a lost update: There are 10 files open, but the kernel thinks there are 11! Down the
line this will cause a Linux kernel panic, a Windows blue screen of death, etc.

 Preemptive kernels must deal with race conditions just like any other piece of
code, using critical sections

 Let’s search for “Google Is Uncovering Hundreds Of Race Conditions Within
The Linux Kernel” …

Critical Section Mechanisms
 What we need to are enter_critical_section() and  
leave_critical_section() mechanisms, to lock and unlock
access to the critical section

 There are some pure-software solutions (mostly historical)

 They can be very complicated, and not guaranteed to work on modern

architectures

 See “Aside: Dekker’s and Peterson’s Algorithms” for details (OSTEP 28.5)

 One option could be to disable interrupts during critical sections (then
there can be no context switches)

 Very dangerous (what if the user “forgets” to re-enable them??)

 Interrupts are useful for other things, not just context switches

 Perhaps ok if done by the kernel occasionally

 The current solution: our CPUs provide atomic instructions

 Instructions that can never be interrupted

 Once a thread begins executing the instruction, it is guaranteed to finish it right

away without the CPU doing anything else

Locks
 Without going into details, with atomic instructions it

is possible to implement a lock data type

 A lock can be in one of two states taken or not taken

 There are two fundamental operations:

 acquire() or lock(): atomically acquires (i.e., puts it
in the “taken state”) the lock if it’s not taken, otherwise fail

 release() or unlock(): releases the lock (i.e., puts it
in the “not taken” state)

 Real-life metaphor: a bathroom key on a hook in a
coffee shop

 Either it’s taken (and somebody is using the bathroom)

 Or it’s not taken

Let’s go back to this example
 Let’s rewrite it with locks

int a = 0;

int b = 2;

int x = 100;

void f() {

 for (int i=0; i < 1000; i++) {

 a++;

 }

}

void g() {

 b++;

 x--;

}

Let’s go back to this example
 Let’s rewrite it with locks

int a = 0;

int b = 2;

int x = 100;

lock_t lock_a, lock_b, lock_x;

void f() {

 for (int i=0; i < 1000; i++) {

 lock_a.lock();

 a++;

 lock_a.unlock();

 }

}

void g() {

 lock_b.lock();

 b++;

 lock_b.unlock();

 lock_x.lock();

 x--;

 lock_x.unlock();

}

Spinlock

 The good:

 A thread will enter the critical section as soon as another has left it

 Very little overhead (the OS is not involved)

 The bad:

 If the critical section is long and a thread is already in it, a thread wanting to get

in will spin for a long time

 This wastes CPU cycles, power, and generates heat

 Think of the real-life coffeeshop metaphor....

Critical Section with a Spinlock
Lock lock;

while (!lock.acquire(){

 // spin

}

// Critical section begins here

. . .

. . .

// Critical section ends here

lock.release();

Blocking Lock
 If the critical section is long (in terms of the time it takes for a

thread to execute it), spinlocks are probably a bad idea

 “The bad” from the previous slide

 If the critical section is long, then a thread shouldn’t be
spinning Instead, it should “sleep” or be “blocked”

 The main idea:

 If the lock cannot be acquired, then ask the OS to put me to sleep (to

the WAITING / BLOCKED state, not in the Ready Queue anymore)

 Whenever the lock is released, then the OS will wake me up (to the

READY state, back into the Ready Queue)

 Real-life metaphor: if the bathroom key is taken, ask the barista

to come “wake you up” at your table whenever the key is ready

 Let’s see pseudo-code...

Blocking Lock

 The good: No wasted CPU cycles

 Which is great if the wait is long

 The bad: High overhead

 Which is bad if the wait is short

 Again think of the real-life metaphor

Critical Section with a Spinlock
Lock lock;

while (!lock.acquire(){

 // Ask the OS to put me to sleep

 // At some point I will be awakened, scheduled,

 // resume this code, and loop back

}

// Critical section begins here

. . .

. . .

// Critical section ends here

lock.release();

Spinlocks and Blocking Locks
 In most programming languages, you declare the lock, using whichever

type you want, and then call the lock() and unlock() function

Critical Sections
SpinLock s_lock;

BlockingLock b_lock;

s_lock.lock();

// Short critical section begins here

...

// Short critical section ends here

s_lock.unlock();

...

b_lock.lock();

// Long critical section begins here

...

// Long critical section ends here

b_lock.unlock();

Fixing our Java Example
 Java provides locks in java.util.concurrent.locks.ReentrantLock

 This is a “smart” lock, which I won’t say much about

 We can thus create a critical section as:

Fixing our Java program
ReentrantLock lock = new ReentrantLock();

public void increment() {

 this.lock.lock();

 this.counter += 1;

 this.lock.unlock()

}

 Let’s look at and run the code in CounterTestV2.java

Java synchronized
 A common bug is to forget to call unlock()

 Java provides a convenient synchronized keyword

Using Java’s synchronized keyword

public synchronized void increment() {

 this.counter += 1;

}

 Let’s look at and run the code in CounterTestV3.java

Locks in OSes

 All OSes provide spinlocks and blocking locks, in
one shape or another

 Many provide smart adaptive locks

 Will spin for a short while, and then will block

 A “perhaps I’ll be lucky” approach

 Totally fits the real-life bathroom key metaphor for

some of us

 There are other kinds of locks (e.g., reader-writer
locks)

Conclusion

 Synchronization is a critical and difficult topic

 Both in practice and in theory

 We only scratched the surface in these lecture notes

 There are many other topics (Condition variables,

Semaphores)

 Bottom line: take ICS 432 if you want to find
out more and gain a lot of hands-on experience

 Onward to Deadlocks...

