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Context
 This whole module is a mere introduction to a large, complicated, 

and fundamental topic

 Most software is multi-threaded at some level, and threads need 

to “synchronize”

 The term “synchronize” is a bit confusing

 In this set of lecture notes it means “make sure threads don’t step on 

each other’s toes in RAM to ensure program correctness” 

 Therefore, this topic is relevant to most software 


 And it’s not easy! 

 Full hands-on experience in ICS 432 


 We’ll only go through a subset of the material in OSTEP 

 26.3, 26.4, 26.5

 28.1, 28.8, 28.12, 28.14 



False Concurrency on One Core
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 We now know that OSes use context-switching to alternate 
between processes/threads on a core 


 This is known as False Concurrency

 Example (gaps = context-switching overhead): 

 Provides the illusion of concurrency to a human because 
time quanta are short


 Increases core utilization because when a process/thread 
does I/O, the core is used by another process/thread



True Concurrency on Multiple Cores

 False concurrency within each core

 True concurrency across cores


 E.g., the yellow and red threads sometimes experience true 
concurrency
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True/False Concurrency
 The programmer should not have to care/know whether concurrency will 

be true or false 

 A concurrent program with 10 threads will work on a single-core processor, a 

quad-core processor, a 32-core processor, etc.

 Typically you don’t know on what kind of computer the program will run anyway


 A multi-threaded program will reach higher interactivity with True and/or 
False concurrency 


 A multi-threaded program will reach higher performance only with True 
concurrency


 Concurrency is not only about cores: there can be concurrency 
between any two hardware resources 


 e.g., between the CPU and the Disk (a Web browser can have a thread that 
reads data from the disk and a thread that renders that data)


 A “let’s just add threads and things will be more interactive and faster” 
approach often works 


 The OS makes it all transparent because it virtualizes the CPU 



The main Pitfall of Concurrency
 “My machine is multicore, and I’ve learned how to 

program with threads! Let me implement a program that 
counts up to some value faster with more threads!!!”


 As usual we start with something really useless :) 

 One global variable: a counter that stores a value

 numThreads threads that each increment the counter 

by one over numIterations iterations

 Let’s look at the code in CounterTestV1.java


 Let’s run this code for:

  1, 2, or many threads, small and large values of 
numIterations


 What do we observe?



Understanding the Pitfall
 High-level programming languages (anything but assembly, and 

even not all assembly languages) hide the complexity of operations 
performed at the CPU level


 In C, incrementing a 4-byte value in RAM:

int *x;

*x += 1;


 Translates in (NASM) x86 assembly language to: 

mov eax, [x]      // set register EAX to *x

inc eax           // increment register EAX 
mov [x], eax      // set *x to the value of EAX


 In MIPS-like assembly, this would be like: 

lw $t0, (x)       // set register t0 to *x

addi $t0, $t0, 1  // increment register t0 
sw $t0, (x)       // set *x to the value of t0



Understanding the Pitfall
 High-level programming languages (anything but assembly, and 

even not all assembly languages) hide the complexity of operations 
performed at the CPU level


 In C, incrementing a 4-byte value in RAM:

int *x;

*x += 1;


 Translates in (NASM) x86 assembly language to: 

mov eax, [x]      // set register EAX to *x

inc eax           // increment register EAX 
mov [x], eax      // set *x to the value of EAX


 In MIPS-like assembly, this would be like: 

lw $t0, (x)       // set register t0 to *x

addi $t0, $t0, 1  // increment register t0 
sw $t0, (x)       // set *x to the value of t0

 The point: x++ is done with 3 instructions



Understanding the Pitfall: 1 thread
 Execution with 1 thread

Instruction Value of EAX Value at [x]
Undefined 0

load [x] into reg 0 0

increment reg 1 0

store reg into [x] 1 1

load [x] into reg 1 1

increment reg 2 1

store reg into [x] 2 2

load [x] into reg 2 2

increment reg 3 2

store reg into [x] 3 3

load [x] into reg 3 3

increment reg 4 3

store reg into [x] 4 4



Understanding the Pitfall: 2 threads
 Let’s play the role of the OS scheduler with a “blue” thread and a “red” thread

Instruction Value of reg Value at [x]

Undefined 0

load [x] into reg 0 0

increment reg 1 0

store reg into [x] 1 1

load [x] into reg 1 1

Context Switch from blue to red

Saved blue registers:    reg = 1, PC = …, etc.

Restored red registers: reg = undef, PC = …, etc


Undefined 1

load [x] into reg 1 1

increment reg 2 1

store reg into [x] 2 2

Context Switch from red to blue

Saved red registers:       reg = 2, PC = …, etc.

Restored blue registers: reg = 1, PC = …, etc


1 2

increment reg 2 2

store reg into [x] 2 2

☠ This is wrong ☠

We executed 3 INCREMENT 
instructions 


We executed 3 STORE instructions 
(just like the 1-thread execution) 

Yet our final value in RAM is 2 
and not 3!! 


Just because the OS did Context 
Switch #2 at the “wrong” time!



Race Condition
 The behavior on the previous slide is called a Race Condition


 Which means we have a concurrency bug

 In this case the bug is called a lost update 


 The outcome depends on when context-switches occur

 When running our Java code, we witnessed many lost updates for 

large values of numIterations

 But: 


 The bug manifests itself differently for each execution

 The bug may manifest itself very rarely for small values of n, and yet the 

program is still buggy! 


 Such non-deterministic bugs make concurrent programming difficult

 The whole “I tested the code 10,000 times, and then the user got a bug” 

problem... 



Lost Update Example
 In general when a thread does x+=a and an another 

does x+=b three things can happen: 

 Both updates go through and x is incremented by a+b

 The x+=a update is lost and x is incremented only by a

 The x+=b update is lost and x is incremented only by b 


 Example: 

 Two variables: a and b, both initially set to 1

 Thread #1: a+=1;  b=a+2;

 Thread #2: a-=1;

 Once both threads are finished, the values of a and b are 

printed

  Question: What are the possible final values? 



Lost Update Example
 First: Come up with possible interleaving of the 

instructions assuming that each instruction is executed 
entirely without being interrupted 

// a=1, b=1

a-=1;

a+=1;  

b=a+2;

// a=1, b=3

// a=1, b=1

a+=1;  

a-=1;

b=a+2;

// a=1, b=3

// a=1, b=1

a+=1;  

b=a+2;

a-=1;

// a=1, b=4

 Two possible outcomes: (a=1,b=3) and 
(a=1,b=4)



How do we fix this?

 Clearly, if we “just add threads” to a sequential 
program and have threads read/write the 
same memory locations, we’ll be in trouble


 Yet, we want them to read/write the same 
memory locations for them to co-operate

 That’s the whole point of having threads


 We need a new programming concept that 
ensures that threads do not “step on each 
other’s toes”


 This concept is called a critical section



Critical Section
 A critical section is a region of 

code in which only one thread can 
be at a time 


 If a thread is already executing code in 
the critical section then all other threads 
are “blocked” before being allowed to 
enter the critical section


 Only one thread will be allowed to enter 
when a thread leaves the critical 
section 


 A critical section does not have to be 
a contiguous section of code 


 In the example here, we have a 3-zone 
critical section (displayed in red) 


 Real-life metaphor: a public bathroom 



Critical Section
 A source code can have multiple critical 

sections

 And they can overlap (not shown in this 

example)

 Just like having multiple bathrooms


 Common misconception: A critical section 
corresponds to a variable 


 This is incorrect: a critical section corresponds 
to section(s) of code (i.e., in the text segment) 


 When people say “we need to protect variable 
x from race conditions” it really means “we 
need to put all the code that updates variables 
x into a critical section” 


 If software design is good, this shouldn’t be too 
much work



Example
 Consider this code fragment, where threads can 

call functions f() and g() at any time
int a = 0;

int b = 2;

int x = 100;


void f() {

  for (int i=0; i < 1000; i++) {

    a++;

  }

}


void g() {

  b++;

  x--;

}



Example
 Consider this code fragment, where threads can 

call functions f() and g() at any time
int a = 0;

int b = 2;

int x = 100;


void f() {

  for (int i=0; i < 1000; i++) {

    a++;

  }

}


void g() {

  b++;

  x--;

}

 One brute-force 
solution is to put 
everything into a 
critical section


 Bad idea: no 
concurrency 
anymore!!



Example
 Consider this code fragment, where threads can 

call functions f() and g() at any time
int a = 0;

int b = 2;

int x = 100;


void f() {

  for (int i=0; i < 1000; i++) {

    a++;

  }

}


void g() {

  b++;

  x--;

}

 Some of the code in 
the critical section is 
not “critical” 
because it’s about 
variables local to a 
thread, so we can 
make the critical 
section smaller, 
which is better for 
concurrency



Example
 Consider this code fragment, where threads can 

call functions f() and g() at any time
int a = 0;

int b = 2;

int x = 100;


void f() {

  for (int i=0; i < 1000; i++) {

    a++;

  }

}


void g() {

  b++;

  x--;

}

 We should also 
use different 
critical sections for 
lines of codes that 
update different 
variables


 This maximizes 
concurrency



Critical Section Duration
 You should always try to make critical sections as short as possible 


 Not in number of lines of code, but in time to run these lines 

 Long critical sections: only one thread can do work for a while, so 

we have reduced opportunities for concurrent execution

 And thus reduced interactivity and/or performance 


 Extreme situation: put the whole code in a critical critical section 

 Guaranteed to have no race condition, but only one thread can run at a 

time

 No concurrency


 Instead, one should use possibly many very short critical sections 
(each protected by a different lock), so that many threads can do 
useful work simultaneously 



Critical Section
 Formally there are three requirements to execute critical 

sections: 

 Mutual Exclusion: If a thread is executing in the critical section, 

then no other thread can be executing in it

 Progress: If a thread wants to enter the critical section, it will 

enter it at some point in the future 

 Bounded Waiting: Once a thread has declared intent to enter the 

critical section, there should be a bound on the number of 
threads that can enter the critical section before it 


 Note that there is no assumption regarding the elapsed 
time spent by each involved thread in the critical section 


 These are theoretical conditions: Programming 
Languages, OSes, Hardware are in charge of the 
“implementation details” 



The Kernel and Race Conditions
 Consider a process that places a system call

 It begins running kernel code

 And then a context switch happens! 


 Modern kernels allow the above (they’re called preemptive kernels)

 But that means we can have race conditions in the kernel!! 


 e.g., the list of open files is some data structure with a size variable. Say that right 
now 10 files are opened. One thread is opening a file, and is context-switched out 
right before storing value 11 into size. Another thread closes a file and updates 
size to 9. The first thread is context switched back in and sets size to 11. We have 
a lost update: There are 10 files open, but the kernel thinks there are 11! Down the 
line this will cause a Linux kernel panic, a Windows blue screen of death, etc. 


 Preemptive kernels must deal with race conditions just like any other piece of 
code, using critical sections


 Let’s search for “Google Is Uncovering Hundreds Of Race Conditions Within 
The Linux Kernel” …



Critical Section Mechanisms
 What we need to are enter_critical_section() and  
leave_critical_section() mechanisms, to lock and unlock 
access to the critical section


 There are some pure-software solutions (mostly historical) 

 They can be very complicated, and not guaranteed to work on modern 

architectures

 See “Aside: Dekker’s and Peterson’s Algorithms” for details (OSTEP 28.5) 


 One option could be to disable interrupts during critical sections (then 
there can be no context switches) 


 Very dangerous (what if the user “forgets” to re-enable them??)

 Interrupts are useful for other things, not just context switches

 Perhaps ok if done by the kernel occasionally 


 The current solution: our CPUs provide atomic instructions

 Instructions that can never be interrupted 

 Once a thread begins executing the instruction, it is guaranteed to finish it right 

away without the CPU doing anything else 



Locks
 Without going into details, with atomic instructions it 

is possible to implement a lock data type 

 A lock can be in one of two states taken or not taken

 There are two fundamental operations: 


 acquire() or lock(): atomically acquires (i.e., puts it 
in the “taken state”) the lock if it’s not taken, otherwise fail


 release() or unlock(): releases the lock (i.e., puts it 
in the “not taken” state) 


 Real-life metaphor: a bathroom key on a hook in a 
coffee shop 

 Either it’s taken (and somebody is using the bathroom)

 Or it’s not taken 



Let’s go back to this example
 Let’s rewrite it with locks

int a = 0;

int b = 2;

int x = 100;


void f() {

  for (int i=0; i < 1000; i++) {

    a++;

  }

}


void g() {

  b++;

  x--;

}



Let’s go back to this example
 Let’s rewrite it with locks

int a = 0;


int b = 2;


int x = 100;


lock_t lock_a, lock_b, lock_x;


void f() {


  for (int i=0; i < 1000; i++) {


    lock_a.lock();


    a++;


    lock_a.unlock();


  }


}

void g() {


  lock_b.lock();


  b++;


  lock_b.unlock();


  lock_x.lock();


  x--;


  lock_x.unlock();


}



Spinlock

 The good: 

 A thread will enter the critical section as soon as another has left it

 Very little overhead (the OS is not involved) 


 The bad: 

 If the critical section is long and a thread is already in it, a thread wanting to get 

in will spin for a long time

 This wastes CPU cycles, power, and generates heat

 Think of the real-life coffeeshop metaphor.... 

Critical Section with a Spinlock
Lock lock;


while (!lock.acquire(){

  // spin

}

// Critical section begins here

. . .

. . .

// Critical section ends here

lock.release();



Blocking Lock
 If the critical section is long (in terms of the time it takes for a 

thread to execute it), spinlocks are probably a bad idea 

 “The bad” from the previous slide 


 If the critical section is long, then a thread shouldn’t be 
spinning Instead, it should “sleep” or be “blocked”


 The main idea: 

 If the lock cannot be acquired, then ask the OS to put me to sleep (to 

the WAITING / BLOCKED state, not in the Ready Queue anymore)

 Whenever the lock is released, then the OS will wake me up (to the 

READY state, back into the Ready Queue) 

 Real-life metaphor: if the bathroom key is taken, ask the barista 

to come “wake you up” at your table whenever the key is ready 

 Let’s see pseudo-code... 



Blocking Lock

 The good:  No wasted CPU cycles

 Which is great if the wait is long


 The bad: High overhead

 Which is bad if the wait is short

 Again think of the real-life metaphor

Critical Section with a Spinlock
Lock lock;


while (!lock.acquire(){

  // Ask the OS to put me to sleep

  // At some point I will be awakened, scheduled,

  // resume this code, and loop back

}

// Critical section begins here

. . .

. . .

// Critical section ends here

lock.release();



Spinlocks and Blocking Locks
 In most programming languages, you declare the lock, using whichever 

type you want, and then call the lock() and unlock() function 

Critical Sections
SpinLock     s_lock;

BlockingLock b_lock; 


s_lock.lock(); 

// Short critical section begins here 

... 

// Short critical section ends here 

s_lock.unlock(); 


... 


b_lock.lock(); 

// Long critical section begins here 

... 

// Long critical section ends here 

b_lock.unlock(); 




Fixing our Java Example
 Java provides locks in java.util.concurrent.locks.ReentrantLock


 This is a “smart” lock, which I won’t say much about 

 We can thus create a critical section as:

Fixing our Java program
ReentrantLock lock = new ReentrantLock();


public void increment() {

 this.lock.lock();


    this.counter += 1;

    this.lock.unlock()

}


 Let’s look at and run the code in CounterTestV2.java



Java synchronized
 A common bug is to forget to call unlock()

 Java provides a convenient synchronized keyword

Using Java’s synchronized keyword

public synchronized void increment() {

    this.counter += 1;

}


 Let’s look at and run the code in CounterTestV3.java



Locks in OSes

 All OSes provide spinlocks and blocking locks, in 
one shape or another 


 Many provide smart adaptive locks

 Will spin for a short while, and then will block 

 A “perhaps I’ll be lucky” approach

 Totally fits the real-life bathroom key metaphor for 

some of us 


 There are other kinds of locks (e.g., reader-writer 
locks) 



Conclusion

 Synchronization is a critical and difficult topic 

 Both in practice and in theory 

 We only scratched the surface in these lecture notes

 There are many other topics (Condition variables, 

Semaphores) 


 Bottom line: take ICS 432 if you want to find 
out more and gain a lot of hands-on experience 


 Onward to Deadlocks... 


