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Context
 This whole module is a mere introduction to a large, complicated, 

and fundamental topic 
 Most software is multi-threaded at some level, and threads need 

to “synchronize” 
 The term “synchronize” is a bit confusing 
 In this set of lecture notes it means “make sure threads don’t step on 

each other’s toes in RAM to ensure program correctness”  
 Therefore, this topic is relevant to most software  

 And it’s not easy!  
 Full hands-on experience in ICS 432  

 We’ll only go through a subset of the material in OSTEP  
 26.3, 26.4, 26.5 
 28.1, 28.8, 28.12, 28.14 



False Concurrency on One Core
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 We now know that OSes use context-switching to alternate 
between processes/threads on a core  

 This is known as False Concurrency 
 Example (gaps = context-switching overhead): 

 Provides the illusion of concurrency to a human because 
time quanta are short 

 Increases core utilization because when a process/thread 
does I/O, the core is used by another process/thread



True Concurrency on Multiple Cores

 False concurrency within each core 
 True concurrency across cores 

 E.g., the yellow and red threads sometimes experience true 
concurrency
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True/False Concurrency
 The programmer should not have to care/know whether concurrency will 

be true or false  
 A concurrent program with 10 threads will work on a single-core processor, a 

quad-core processor, a 32-core processor, etc. 
 Typically you don’t know on what kind of computer the program will run anyway 

 A multi-threaded program will reach higher interactivity with True and/or 
False concurrency  

 A multi-threaded program will reach higher performance only with True 
concurrency 

 Concurrency is not only about cores: there can be concurrency 
between any two hardware resources  

 e.g., between the CPU and the Disk (a Web browser can have a thread that 
reads data from the disk and a thread that renders that data) 

 A “let’s just add threads and things will be more interactive and faster” 
approach often works  

 The OS makes it all transparent because it virtualizes the CPU 



The main Pitfall of Concurrency
 “My machine is multicore, and I’ve learned how to 

program with threads! Let me implement a program that 
counts up to some value faster with more threads!!!” 

 As usual we start with something really useless :)  
 One global variable: a counter that stores a value 
 numThreads threads that each increment the counter 

by one over numIterations iterations 
 Let’s look at the code in CounterTestV1.java 

 Let’s run this code for: 
  1, 2, or many threads, small and large values of 
numIterations 

 What do we observe?



Understanding the Pitfall
 High-level programming languages (anything but assembly, and 

even not all assembly languages) hide the complexity of operations 
performed at the CPU level 

 In C, incrementing a 4-byte value in RAM: 
int *x; 
*x += 1; 

 Translates in (NASM) x86 assembly language to:  
mov eax, [x]      // set register EAX to *x 
inc eax           // increment register EAX 
mov [x], eax      // set *x to the value of EAX 

 In MIPS-like assembly, this would be like:  
lw $t0, (x)       // set register t0 to *x 
addi $t0, $t0, 1  // increment register t0 
sw $t0, (x)       // set *x to the value of t0



Understanding the Pitfall
 High-level programming languages (anything but assembly, and 

even not all assembly languages) hide the complexity of operations 
performed at the CPU level 

 In C, incrementing a 4-byte value in RAM: 
int *x; 
*x += 1; 

 Translates in (NASM) x86 assembly language to:  
mov eax, [x]      // set register EAX to *x 
inc eax           // increment register EAX 
mov [x], eax      // set *x to the value of EAX 

 In MIPS-like assembly, this would be like:  
lw $t0, (x)       // set register t0 to *x 
addi $t0, $t0, 1  // increment register t0 
sw $t0, (x)       // set *x to the value of t0

 The point: x++ is done with 3 instructions



Understanding the Pitfall: 1 thread
 Execution with 1 thread

Instruction Value of EAX Value at [x]
Undefined 0

load [x] into reg 0 0

increment reg 1 0

store reg into [x] 1 1

load [x] into reg 1 1

increment reg 2 1

store reg into [x] 2 2

load [x] into reg 2 2

increment reg 3 2

store reg into [x] 3 3

load [x] into reg 3 3

increment reg 4 3

store reg into [x] 4 4



Understanding the Pitfall: 2 threads
 Let’s play the role of the OS scheduler with a “blue” thread and a “red” thread

Instruction Value of reg Value at [x]

Undefined 0

load [x] into reg 0 0

increment reg 1 0

store reg into [x] 1 1

load [x] into reg 1 1

Context Switch from blue to red 
Saved blue registers:    reg = 1, PC = …, etc. 
Restored red registers: reg = undef, PC = …, etc 

Undefined 1

load [x] into reg 1 1

increment reg 2 1

store reg into [x] 2 2

Context Switch from red to blue 
Saved red registers:       reg = 2, PC = …, etc. 
Restored blue registers: reg = 1, PC = …, etc 

1 2

increment reg 2 2

store reg into [x] 2 2

☠ This is wrong ☠ 
We executed 3 INCREMENT 
instructions  

We executed 3 STORE instructions 
(just like the 1-thread execution) 

Yet our final value in RAM is 2 
and not 3!!  

Just because the OS did Context 
Switch #2 at the “wrong” time!



Race Condition
 The behavior on the previous slide is called a Race Condition 

 Which means we have a concurrency bug 
 In this case the bug is called a lost update  

 The outcome depends on when context-switches occur 
 When running our Java code, we witnessed many lost updates for 

large values of numIterations 
 But:  

 The bug manifests itself differently for each execution 
 The bug may manifest itself very rarely for small values of n, and yet the 

program is still buggy!  

 Such non-deterministic bugs make concurrent programming difficult 
 The whole “I tested the code 10,000 times, and then the user got a bug” 

problem... 



Lost Update Example
 In general when a thread does x+=a and an another 

does x+=b three things can happen:  
 Both updates go through and x is incremented by a+b 
 The x+=a update is lost and x is incremented only by a 
 The x+=b update is lost and x is incremented only by b  

 Example:  
 Two variables: a and b, both initially set to 1 
 Thread #1: a+=1;  b=a+2; 
 Thread #2: a-=1; 
 Once both threads are finished, the values of a and b are 

printed 
  Question: What are the possible final values? 



Lost Update Example
 First: Come up with possible interleaving of the 

instructions assuming that each instruction is executed 
entirely without being interrupted 

// a=1, b=1 
a-=1; 
a+=1;   
b=a+2; 
// a=1, b=3

// a=1, b=1 
a+=1;   
a-=1; 
b=a+2; 
// a=1, b=3

// a=1, b=1 
a+=1;   
b=a+2; 
a-=1; 
// a=1, b=4

 Two possible outcomes: (a=1,b=3) and 
(a=1,b=4)



How do we fix this?

 Clearly, if we “just add threads” to a sequential 
program and have threads read/write the 
same memory locations, we’ll be in trouble 

 Yet, we want them to read/write the same 
memory locations for them to co-operate 
 That’s the whole point of having threads 

 We need a new programming concept that 
ensures that threads do not “step on each 
other’s toes” 

 This concept is called a critical section



Critical Section
 A critical section is a region of 

code in which only one thread can 
be at a time  

 If a thread is already executing code in 
the critical section then all other threads 
are “blocked” before being allowed to 
enter the critical section 

 Only one thread will be allowed to enter 
when a thread leaves the critical 
section  

 A critical section does not have to be 
a contiguous section of code  

 In the example here, we have a 3-zone 
critical section (displayed in red)  

 Real-life metaphor: a public bathroom 



Critical Section
 A source code can have multiple critical 

sections 
 And they can overlap (not shown in this 

example) 
 Just like having multiple bathrooms 

 Common misconception: A critical section 
corresponds to a variable  

 This is incorrect: a critical section corresponds 
to section(s) of code (i.e., in the text segment)  

 When people say “we need to protect variable 
x from race conditions” it really means “we 
need to put all the code that updates variables 
x into a critical section”  

 If software design is good, this shouldn’t be too 
much work



Example
 Consider this code fragment, where threads can 

call functions f() and g() at any time
int a = 0; 
int b = 2; 
int x = 100; 

void f() { 
  for (int i=0; i < 1000; i++) { 
    a++; 
  } 
} 

void g() { 
  b++; 
  x--; 
}



Example
 Consider this code fragment, where threads can 

call functions f() and g() at any time
int a = 0; 
int b = 2; 
int x = 100; 

void f() { 
  for (int i=0; i < 1000; i++) { 
    a++; 
  } 
} 

void g() { 
  b++; 
  x--; 
}

 One brute-force 
solution is to put 
everything into a 
critical section 

 Bad idea: no 
concurrency 
anymore!!



Example
 Consider this code fragment, where threads can 

call functions f() and g() at any time
int a = 0; 
int b = 2; 
int x = 100; 

void f() { 
  for (int i=0; i < 1000; i++) { 
    a++; 
  } 
} 

void g() { 
  b++; 
  x--; 
}

 Some of the code in 
the critical section is 
not “critical” 
because it’s about 
variables local to a 
thread, so we can 
make the critical 
section smaller, 
which is better for 
concurrency



Example
 Consider this code fragment, where threads can 

call functions f() and g() at any time
int a = 0; 
int b = 2; 
int x = 100; 

void f() { 
  for (int i=0; i < 1000; i++) { 
    a++; 
  } 
} 

void g() { 
  b++; 
  x--; 
}

 We should also 
use different 
critical sections for 
lines of codes that 
update different 
variables 

 This maximizes 
concurrency



Critical Section Duration
 You should always try to make critical sections as short as possible  

 Not in number of lines of code, but in time to run these lines  
 Long critical sections: only one thread can do work for a while, so 

we have reduced opportunities for concurrent execution 
 And thus reduced interactivity and/or performance  

 Extreme situation: put the whole code in a critical critical section  
 Guaranteed to have no race condition, but only one thread can run at a 

time 
 No concurrency 

 Instead, one should use possibly many very short critical sections 
(each protected by a different lock), so that many threads can do 
useful work simultaneously 



Critical Section
 Formally there are three requirements to execute critical 

sections:  
 Mutual Exclusion: If a thread is executing in the critical section, 

then no other thread can be executing in it 
 Progress: If a thread wants to enter the critical section, it will 

enter it at some point in the future  
 Bounded Waiting: Once a thread has declared intent to enter the 

critical section, there should be a bound on the number of 
threads that can enter the critical section before it  

 Note that there is no assumption regarding the elapsed 
time spent by each involved thread in the critical section  

 These are theoretical conditions: Programming 
Languages, OSes, Hardware are in charge of the 
“implementation details” 



The Kernel and Race Conditions
 Consider a process that places a system call 
 It begins running kernel code 
 And then a context switch happens!  

 Modern kernels allow the above (they’re called preemptive kernels) 
 But that means we can have race conditions in the kernel!!  

 e.g., the list of open files is some data structure with a size variable. Say that right 
now 10 files are opened. One thread is opening a file, and is context-switched out 
right before storing value 11 into size. Another thread closes a file and updates 
size to 9. The first thread is context switched back in and sets size to 11. We have 
a lost update: There are 10 files open, but the kernel thinks there are 11! Down the 
line this will cause a Linux kernel panic, a Windows blue screen of death, etc.  

 Preemptive kernels must deal with race conditions just like any other piece of 
code, using critical sections 

 Let’s search for “Google Is Uncovering Hundreds Of Race Conditions Within 
The Linux Kernel” …



Critical Section Mechanisms
 What we need to are enter_critical_section() and  
leave_critical_section() mechanisms, to lock and unlock 
access to the critical section 

 There are some pure-software solutions (mostly historical)  
 They can be very complicated, and not guaranteed to work on modern 

architectures 
 See “Aside: Dekker’s and Peterson’s Algorithms” for details (OSTEP 28.5)  

 One option could be to disable interrupts during critical sections (then 
there can be no context switches)  

 Very dangerous (what if the user “forgets” to re-enable them??) 
 Interrupts are useful for other things, not just context switches 
 Perhaps ok if done by the kernel occasionally  

 The current solution: our CPUs provide atomic instructions 
 Instructions that can never be interrupted  
 Once a thread begins executing the instruction, it is guaranteed to finish it right 

away without the CPU doing anything else 



Locks
 Without going into details, with atomic instructions it 

is possible to implement a lock data type  
 A lock can be in one of two states taken or not taken 
 There are two fundamental operations:  

 acquire() or lock(): atomically acquires (i.e., puts it 
in the “taken state”) the lock if it’s not taken, otherwise fail 

 release() or unlock(): releases the lock (i.e., puts it 
in the “not taken” state)  

 Real-life metaphor: a bathroom key on a hook in a 
coffee shop  
 Either it’s taken (and somebody is using the bathroom) 
 Or it’s not taken 



Let’s go back to this example
 Let’s rewrite it with locks

int a = 0; 
int b = 2; 
int x = 100; 

void f() { 
  for (int i=0; i < 1000; i++) { 
    a++; 
  } 
} 

void g() { 
  b++; 
  x--; 
}



Let’s go back to this example
 Let’s rewrite it with locks

int a = 0; 

int b = 2; 

int x = 100; 

lock_t lock_a, lock_b, lock_x; 

void f() { 

  for (int i=0; i < 1000; i++) { 

    lock_a.lock(); 

    a++; 

    lock_a.unlock(); 

  } 

}

void g() { 

  lock_b.lock(); 

  b++; 

  lock_b.unlock(); 

  lock_x.lock(); 

  x--; 

  lock_x.unlock(); 

}



Spinlock

 The good:  
 A thread will enter the critical section as soon as another has left it 
 Very little overhead (the OS is not involved)  

 The bad:  
 If the critical section is long and a thread is already in it, a thread wanting to get 

in will spin for a long time 
 This wastes CPU cycles, power, and generates heat 
 Think of the real-life coffeeshop metaphor.... 

Critical Section with a Spinlock
Lock lock; 

while (!lock.acquire(){ 
  // spin 
} 
// Critical section begins here 
. . . 
. . . 
// Critical section ends here 
lock.release();



Blocking Lock
 If the critical section is long (in terms of the time it takes for a 

thread to execute it), spinlocks are probably a bad idea  
 “The bad” from the previous slide  

 If the critical section is long, then a thread shouldn’t be 
spinning Instead, it should “sleep” or be “blocked” 

 The main idea:  
 If the lock cannot be acquired, then ask the OS to put me to sleep (to 

the WAITING / BLOCKED state, not in the Ready Queue anymore) 
 Whenever the lock is released, then the OS will wake me up (to the 

READY state, back into the Ready Queue)  
 Real-life metaphor: if the bathroom key is taken, ask the barista 

to come “wake you up” at your table whenever the key is ready  
 Let’s see pseudo-code... 



Blocking Lock

 The good:  No wasted CPU cycles 
 Which is great if the wait is long 

 The bad: High overhead 
 Which is bad if the wait is short 
 Again think of the real-life metaphor

Critical Section with a Spinlock
Lock lock; 

while (!lock.acquire(){ 
  // Ask the OS to put me to sleep 
  // At some point I will be awakened, scheduled, 
  // resume this code, and loop back 
} 
// Critical section begins here 
. . . 
. . . 
// Critical section ends here 
lock.release();



Spinlocks and Blocking Locks
 In most programming languages, you declare the lock, using whichever 

type you want, and then call the lock() and unlock() function 

Critical Sections
SpinLock     s_lock; 
BlockingLock b_lock;  

s_lock.lock();  
// Short critical section begins here  
...  
// Short critical section ends here  
s_lock.unlock();  

...  

b_lock.lock();  
// Long critical section begins here  
...  
// Long critical section ends here  
b_lock.unlock();  



Fixing our Java Example
 Java provides locks in java.util.concurrent.locks.ReentrantLock 

 This is a “smart” lock, which I won’t say much about  
 We can thus create a critical section as:

Fixing our Java program
ReentrantLock lock = new ReentrantLock(); 

public void increment() { 
 this.lock.lock(); 

    this.counter += 1; 
    this.lock.unlock() 
} 

 Let’s look at and run the code in CounterTestV2.java



Java synchronized
 A common bug is to forget to call unlock() 
 Java provides a convenient synchronized keyword

Using Java’s synchronized keyword

public synchronized void increment() { 
    this.counter += 1; 
} 

 Let’s look at and run the code in CounterTestV3.java



Locks in OSes

 All OSes provide spinlocks and blocking locks, in 
one shape or another  

 Many provide smart adaptive locks 
 Will spin for a short while, and then will block  
 A “perhaps I’ll be lucky” approach 
 Totally fits the real-life bathroom key metaphor for 

some of us  

 There are other kinds of locks (e.g., reader-writer 
locks) 



Conclusion

 Synchronization is a critical and difficult topic  
 Both in practice and in theory  
 We only scratched the surface in these lecture notes 
 There are many other topics (Condition variables, 

Semaphores)  

 Bottom line: take ICS 432 if you want to find 
out more and gain a lot of hands-on experience  

 Onward to Deadlocks... 


