
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Synchronization:
Race Conditions

Context
 This whole module is a mere introduction to a large, complicated,

and fundamental topic
 Most software is multi-threaded at some level, and threads need

to “synchronize”
 The term “synchronize” is a bit confusing
 In this set of lecture notes it means “make sure threads don’t step on

each other’s toes in RAM to ensure program correctness”
 Therefore, this topic is relevant to most software

 And it’s not easy!
 Full hands-on experience in ICS 432

 We’ll only go through a subset of the material in OSTEP
 26.3, 26.4, 26.5
 28.1, 28.8, 28.12, 28.14

False Concurrency on One Core

time

on
e

co
re

 We now know that OSes use context-switching to alternate
between processes/threads on a core

 This is known as False Concurrency
 Example (gaps = context-switching overhead):

 Provides the illusion of concurrency to a human because
time quanta are short

 Increases core utilization because when a process/thread
does I/O, the core is used by another process/thread

True Concurrency on Multiple Cores

 False concurrency within each core
 True concurrency across cores

 E.g., the yellow and red threads sometimes experience true
concurrency

time

co
re

 #
1

time

co
re

 #
2

True/False Concurrency
 The programmer should not have to care/know whether concurrency will

be true or false
 A concurrent program with 10 threads will work on a single-core processor, a

quad-core processor, a 32-core processor, etc.
 Typically you don’t know on what kind of computer the program will run anyway

 A multi-threaded program will reach higher interactivity with True and/or
False concurrency

 A multi-threaded program will reach higher performance only with True
concurrency

 Concurrency is not only about cores: there can be concurrency
between any two hardware resources

 e.g., between the CPU and the Disk (a Web browser can have a thread that
reads data from the disk and a thread that renders that data)

 A “let’s just add threads and things will be more interactive and faster”
approach often works

 The OS makes it all transparent because it virtualizes the CPU

The main Pitfall of Concurrency
 “My machine is multicore, and I’ve learned how to

program with threads! Let me implement a program that
counts up to some value faster with more threads!!!”

 As usual we start with something really useless :)
 One global variable: a counter that stores a value
 numThreads threads that each increment the counter

by one over numIterations iterations
 Let’s look at the code in CounterTestV1.java

 Let’s run this code for:
 1, 2, or many threads, small and large values of
numIterations

 What do we observe?

Understanding the Pitfall
 High-level programming languages (anything but assembly, and

even not all assembly languages) hide the complexity of operations
performed at the CPU level

 In C, incrementing a 4-byte value in RAM:
int *x;
*x += 1;

 Translates in (NASM) x86 assembly language to:
mov eax, [x] // set register EAX to *x
inc eax // increment register EAX
mov [x], eax // set *x to the value of EAX

 In MIPS-like assembly, this would be like:
lw $t0, (x) // set register t0 to *x
addi $t0, $t0, 1 // increment register t0
sw $t0, (x) // set *x to the value of t0

Understanding the Pitfall
 High-level programming languages (anything but assembly, and

even not all assembly languages) hide the complexity of operations
performed at the CPU level

 In C, incrementing a 4-byte value in RAM:
int *x;
*x += 1;

 Translates in (NASM) x86 assembly language to:
mov eax, [x] // set register EAX to *x
inc eax // increment register EAX
mov [x], eax // set *x to the value of EAX

 In MIPS-like assembly, this would be like:
lw $t0, (x) // set register t0 to *x
addi $t0, $t0, 1 // increment register t0
sw $t0, (x) // set *x to the value of t0

 The point: x++ is done with 3 instructions

Understanding the Pitfall: 1 thread
 Execution with 1 thread

Instruction Value of EAX Value at [x]
Undefined 0

load [x] into reg 0 0

increment reg 1 0

store reg into [x] 1 1

load [x] into reg 1 1

increment reg 2 1

store reg into [x] 2 2

load [x] into reg 2 2

increment reg 3 2

store reg into [x] 3 3

load [x] into reg 3 3

increment reg 4 3

store reg into [x] 4 4

Understanding the Pitfall: 2 threads
 Let’s play the role of the OS scheduler with a “blue” thread and a “red” thread

Instruction Value of reg Value at [x]

Undefined 0

load [x] into reg 0 0

increment reg 1 0

store reg into [x] 1 1

load [x] into reg 1 1

Context Switch from blue to red
Saved blue registers: reg = 1, PC = …, etc.
Restored red registers: reg = undef, PC = …, etc

Undefined 1

load [x] into reg 1 1

increment reg 2 1

store reg into [x] 2 2

Context Switch from red to blue
Saved red registers: reg = 2, PC = …, etc.
Restored blue registers: reg = 1, PC = …, etc

1 2

increment reg 2 2

store reg into [x] 2 2

☠ This is wrong ☠
We executed 3 INCREMENT
instructions

We executed 3 STORE instructions
(just like the 1-thread execution)

Yet our final value in RAM is 2
and not 3!!

Just because the OS did Context
Switch #2 at the “wrong” time!

Race Condition
 The behavior on the previous slide is called a Race Condition

 Which means we have a concurrency bug
 In this case the bug is called a lost update

 The outcome depends on when context-switches occur
 When running our Java code, we witnessed many lost updates for

large values of numIterations
 But:

 The bug manifests itself differently for each execution
 The bug may manifest itself very rarely for small values of n, and yet the

program is still buggy!

 Such non-deterministic bugs make concurrent programming difficult
 The whole “I tested the code 10,000 times, and then the user got a bug”

problem...

Lost Update Example
 In general when a thread does x+=a and an another

does x+=b three things can happen:
 Both updates go through and x is incremented by a+b
 The x+=a update is lost and x is incremented only by a
 The x+=b update is lost and x is incremented only by b

 Example:
 Two variables: a and b, both initially set to 1
 Thread #1: a+=1; b=a+2;
 Thread #2: a-=1;
 Once both threads are finished, the values of a and b are

printed
 Question: What are the possible final values?

Lost Update Example
 First: Come up with possible interleaving of the

instructions assuming that each instruction is executed
entirely without being interrupted

// a=1, b=1
a-=1;
a+=1;
b=a+2;
// a=1, b=3

// a=1, b=1
a+=1;
a-=1;
b=a+2;
// a=1, b=3

// a=1, b=1
a+=1;
b=a+2;
a-=1;
// a=1, b=4

 Two possible outcomes: (a=1,b=3) and
(a=1,b=4)

How do we fix this?

 Clearly, if we “just add threads” to a sequential
program and have threads read/write the
same memory locations, we’ll be in trouble

 Yet, we want them to read/write the same
memory locations for them to co-operate
 That’s the whole point of having threads

 We need a new programming concept that
ensures that threads do not “step on each
other’s toes”

 This concept is called a critical section

Critical Section
 A critical section is a region of

code in which only one thread can
be at a time

 If a thread is already executing code in
the critical section then all other threads
are “blocked” before being allowed to
enter the critical section

 Only one thread will be allowed to enter
when a thread leaves the critical
section

 A critical section does not have to be
a contiguous section of code

 In the example here, we have a 3-zone
critical section (displayed in red)

 Real-life metaphor: a public bathroom

Critical Section
 A source code can have multiple critical

sections
 And they can overlap (not shown in this

example)
 Just like having multiple bathrooms

 Common misconception: A critical section
corresponds to a variable

 This is incorrect: a critical section corresponds
to section(s) of code (i.e., in the text segment)

 When people say “we need to protect variable
x from race conditions” it really means “we
need to put all the code that updates variables
x into a critical section”

 If software design is good, this shouldn’t be too
much work

Example
 Consider this code fragment, where threads can

call functions f() and g() at any time
int a = 0;
int b = 2;
int x = 100;

void f() {
 for (int i=0; i < 1000; i++) {
 a++;
 }
}

void g() {
 b++;
 x--;
}

Example
 Consider this code fragment, where threads can

call functions f() and g() at any time
int a = 0;
int b = 2;
int x = 100;

void f() {
 for (int i=0; i < 1000; i++) {
 a++;
 }
}

void g() {
 b++;
 x--;
}

 One brute-force
solution is to put
everything into a
critical section

 Bad idea: no
concurrency
anymore!!

Example
 Consider this code fragment, where threads can

call functions f() and g() at any time
int a = 0;
int b = 2;
int x = 100;

void f() {
 for (int i=0; i < 1000; i++) {
 a++;
 }
}

void g() {
 b++;
 x--;
}

 Some of the code in
the critical section is
not “critical”
because it’s about
variables local to a
thread, so we can
make the critical
section smaller,
which is better for
concurrency

Example
 Consider this code fragment, where threads can

call functions f() and g() at any time
int a = 0;
int b = 2;
int x = 100;

void f() {
 for (int i=0; i < 1000; i++) {
 a++;
 }
}

void g() {
 b++;
 x--;
}

 We should also
use different
critical sections for
lines of codes that
update different
variables

 This maximizes
concurrency

Critical Section Duration
 You should always try to make critical sections as short as possible

 Not in number of lines of code, but in time to run these lines
 Long critical sections: only one thread can do work for a while, so

we have reduced opportunities for concurrent execution
 And thus reduced interactivity and/or performance

 Extreme situation: put the whole code in a critical critical section
 Guaranteed to have no race condition, but only one thread can run at a

time
 No concurrency

 Instead, one should use possibly many very short critical sections
(each protected by a different lock), so that many threads can do
useful work simultaneously

Critical Section
 Formally there are three requirements to execute critical

sections:
 Mutual Exclusion: If a thread is executing in the critical section,

then no other thread can be executing in it
 Progress: If a thread wants to enter the critical section, it will

enter it at some point in the future
 Bounded Waiting: Once a thread has declared intent to enter the

critical section, there should be a bound on the number of
threads that can enter the critical section before it

 Note that there is no assumption regarding the elapsed
time spent by each involved thread in the critical section

 These are theoretical conditions: Programming
Languages, OSes, Hardware are in charge of the
“implementation details”

The Kernel and Race Conditions
 Consider a process that places a system call
 It begins running kernel code
 And then a context switch happens!

 Modern kernels allow the above (they’re called preemptive kernels)
 But that means we can have race conditions in the kernel!!

 e.g., the list of open files is some data structure with a size variable. Say that right
now 10 files are opened. One thread is opening a file, and is context-switched out
right before storing value 11 into size. Another thread closes a file and updates
size to 9. The first thread is context switched back in and sets size to 11. We have
a lost update: There are 10 files open, but the kernel thinks there are 11! Down the
line this will cause a Linux kernel panic, a Windows blue screen of death, etc.

 Preemptive kernels must deal with race conditions just like any other piece of
code, using critical sections

 Let’s search for “Google Is Uncovering Hundreds Of Race Conditions Within
The Linux Kernel” …

Critical Section Mechanisms
 What we need to are enter_critical_section() and
leave_critical_section() mechanisms, to lock and unlock
access to the critical section

 There are some pure-software solutions (mostly historical)
 They can be very complicated, and not guaranteed to work on modern

architectures
 See “Aside: Dekker’s and Peterson’s Algorithms” for details (OSTEP 28.5)

 One option could be to disable interrupts during critical sections (then
there can be no context switches)

 Very dangerous (what if the user “forgets” to re-enable them??)
 Interrupts are useful for other things, not just context switches
 Perhaps ok if done by the kernel occasionally

 The current solution: our CPUs provide atomic instructions
 Instructions that can never be interrupted
 Once a thread begins executing the instruction, it is guaranteed to finish it right

away without the CPU doing anything else

Locks
 Without going into details, with atomic instructions it

is possible to implement a lock data type
 A lock can be in one of two states taken or not taken
 There are two fundamental operations:

 acquire() or lock(): atomically acquires (i.e., puts it
in the “taken state”) the lock if it’s not taken, otherwise fail

 release() or unlock(): releases the lock (i.e., puts it
in the “not taken” state)

 Real-life metaphor: a bathroom key on a hook in a
coffee shop
 Either it’s taken (and somebody is using the bathroom)
 Or it’s not taken

Let’s go back to this example
 Let’s rewrite it with locks

int a = 0;
int b = 2;
int x = 100;

void f() {
 for (int i=0; i < 1000; i++) {
 a++;
 }
}

void g() {
 b++;
 x--;
}

Let’s go back to this example
 Let’s rewrite it with locks

int a = 0;

int b = 2;

int x = 100;

lock_t lock_a, lock_b, lock_x;

void f() {

 for (int i=0; i < 1000; i++) {

 lock_a.lock();

 a++;

 lock_a.unlock();

 }

}

void g() {

 lock_b.lock();

 b++;

 lock_b.unlock();

 lock_x.lock();

 x--;

 lock_x.unlock();

}

Spinlock

 The good:
 A thread will enter the critical section as soon as another has left it
 Very little overhead (the OS is not involved)

 The bad:
 If the critical section is long and a thread is already in it, a thread wanting to get

in will spin for a long time
 This wastes CPU cycles, power, and generates heat
 Think of the real-life coffeeshop metaphor....

Critical Section with a Spinlock
Lock lock;

while (!lock.acquire(){
 // spin
}
// Critical section begins here
. . .
. . .
// Critical section ends here
lock.release();

Blocking Lock
 If the critical section is long (in terms of the time it takes for a

thread to execute it), spinlocks are probably a bad idea
 “The bad” from the previous slide

 If the critical section is long, then a thread shouldn’t be
spinning Instead, it should “sleep” or be “blocked”

 The main idea:
 If the lock cannot be acquired, then ask the OS to put me to sleep (to

the WAITING / BLOCKED state, not in the Ready Queue anymore)
 Whenever the lock is released, then the OS will wake me up (to the

READY state, back into the Ready Queue)
 Real-life metaphor: if the bathroom key is taken, ask the barista

to come “wake you up” at your table whenever the key is ready
 Let’s see pseudo-code...

Blocking Lock

 The good: No wasted CPU cycles
 Which is great if the wait is long

 The bad: High overhead
 Which is bad if the wait is short
 Again think of the real-life metaphor

Critical Section with a Spinlock
Lock lock;

while (!lock.acquire(){
 // Ask the OS to put me to sleep
 // At some point I will be awakened, scheduled,
 // resume this code, and loop back
}
// Critical section begins here
. . .
. . .
// Critical section ends here
lock.release();

Spinlocks and Blocking Locks
 In most programming languages, you declare the lock, using whichever

type you want, and then call the lock() and unlock() function

Critical Sections
SpinLock s_lock;
BlockingLock b_lock;

s_lock.lock();
// Short critical section begins here
...
// Short critical section ends here
s_lock.unlock();

...

b_lock.lock();
// Long critical section begins here
...
// Long critical section ends here
b_lock.unlock();

Fixing our Java Example
 Java provides locks in java.util.concurrent.locks.ReentrantLock

 This is a “smart” lock, which I won’t say much about
 We can thus create a critical section as:

Fixing our Java program
ReentrantLock lock = new ReentrantLock();

public void increment() {
 this.lock.lock();

 this.counter += 1;
 this.lock.unlock()
}

 Let’s look at and run the code in CounterTestV2.java

Java synchronized
 A common bug is to forget to call unlock()
 Java provides a convenient synchronized keyword

Using Java’s synchronized keyword

public synchronized void increment() {
 this.counter += 1;
}

 Let’s look at and run the code in CounterTestV3.java

Locks in OSes

 All OSes provide spinlocks and blocking locks, in
one shape or another

 Many provide smart adaptive locks
 Will spin for a short while, and then will block
 A “perhaps I’ll be lucky” approach
 Totally fits the real-life bathroom key metaphor for

some of us

 There are other kinds of locks (e.g., reader-writer
locks)

Conclusion

 Synchronization is a critical and difficult topic
 Both in practice and in theory
 We only scratched the surface in these lecture notes
 There are many other topics (Condition variables,

Semaphores)

 Bottom line: take ICS 432 if you want to find
out more and gain a lot of hands-on experience

 Onward to Deadlocks...

