
Henri Casanova (henric@hawaii.edu)

ICS332

Operating Systems

Threads

Concurrent Programming
 Concurrency: the execution of multiple “tasks” at the “same” time

 College students mostly write non-concurrent, or sequential,

programs

 At any point, you could stop the program and say exactly which

execution is being executed, what the calling sequence is, what the
runtime stack looks like, etc.

 And there is a single answer to all the above for all execution of your
program at the same point in its execution

 In a concurrent program, you design the program in terms of
tasks, where each task as a “life of its own”

 Each task has a specific job to do

 Tasks may need to “talk” to each other or “wait” for each other

 Tasks can be in different regions of the code or in the same region of

the code a the same time

 A different way of thinking/programming	

Example #1: Make it Fast
 Consider an input array of 10,000 integers: { 23, 56, 7, 68, 68 ...}

 I want to output a boolean array where each element is true if and only if the

corresponding integer in the input array is odd 
{ true, false, true, false, false ...}

 Assume that it takes one millisecond to test an integer value and update the
output array

 Sequential programming:

 Iterate through the array, which would take 10,000 milliseconds.

 Concurrent programming:

 If I create 10 “tasks” that each compute 1000 output values, i.e., 1/10-th of the

work, each task takes 1,000 milliseconds

 Now if I can execute these 10 tasks independently (on a 10-core processor), the

whole execution could take only 1,000 milliseconds, i.e., 10 times faster

 In practice, we can’t go quite 10 times faster due to various overheads and

bottlenecks (e.g., memory)

 But we will go much faster than sequential, provided be have multiple cores (which

we all do in this day and age!)

Example #2: Make it Responsive
 Consider a Photoshop-like app in which a click of a button launches a

transformation filter of all images that a user has selected

 If many images are selected, this can take minutes

 Sequential programming:

 While the transformation is happening, no other code can run, including the

code that reacts to button clicks, meaning that the application is “frozen”,
including whatever “Cancel” button one may have tried to implement

 One solution, which is terrible, is to sprinkle “check whether the button is being
clicked” code all over the code that performs the transformation

 And it may not be feasible if that code is, for instance, a 3rd-party library

 Concurrent programming:

 Create a “task” in charge of watching buttons and reacting to clicks, which runs
all the time

 Whenever the user clicks on some “OK” button to perform the image
transformations, create a “task” in charge of it

 Both tasks then run “at the same time”, and thus while the image transformation
is being performed, the user can still interact with the app

Why Concurrency
 The two previous examples illustrate the two main

motivations for concurrency

 Make programs faster

 Because multiple tasks can use different hardware
components at the same time

 e.g., while task #1 uses a core, task #2 uses another
core, and task #3 uses the network card

 Make programs more responsive

 While a task is blocked or doing something time

consuming, other tasks can still execute

 e.g., while a task is stuck waiting for a network packet to

arrive, another can display an animated spinning wheel

Concurrency with Processes
 We have already talked about concurrency

 After all it’s the 2nd “easy piece” in our textbook

 Processes run concurrently on the computer

 They were used for concurrent programming a lot say until the
early 90’s

 And still used a lot, e.g., see our programming assignment

 But because the OS virtualizes memory, by default

processes don’t share memory

 We have seen that processes can communicate with IPC

 Message passing: often not easy when processes have
complicated cooperating behaviors

 Shared Memory: often simpler, but requires many system calls
and cumbersome, up until the arrival of… threads!

Threads
 A thread is a basic unit of CPU utilization within a process (i.e., it’s a

can be seen as a “task”)

 A Multi-threaded process: Concurrent executions of different parts of

the same running program, where each execution is a thread

 Each thread has its own:

 Thread ID (assigned by the OS)

 Program Counter (which instruction the thread currently executes)

 Registers Set (which values are stored in registers)

 Stack (bookkeeping of the thread’s function/method invocations)

 The above fully defines “what a thread is doing right now”

 But “within a process” threads share:

 The code/text section

 The data segment (global variables)

 The heap

 And other things (file descriptors, signal handlers, …)

Threads: Typical Representation

code data heap

stackregs

thread

Single-Threaded Process

Threads: Typical Representation

code data heap

stackregs

code data heap

sr sr sr

thread

Single-Threaded Process Multi-Threaded Process

Multi-Threaded Program in Execution

Multi-Threaded Program in Execution

Multi-Threaded Program in Execution

Multi-Threaded Program in Execution

Threads in a process can be
doing different things

Multi-Threaded Program in Execution

Or they can be running the
same code at the same time

(more or less)

Multi-Threaded Program in Execution
Or any combination thereof

Threads vs. Processes
 😀 Memory sharing

 Threads naturally share memory among each other

 Provides a direct Shared Memory IPC mechanism with no system calls

 Having concurrent activities in the same address space is very powerful

 It makes it possible to implement all kinds of concurrency behaviors/patterns

 😡 No memory protection

 This is a “feature” since we want threads to share memory

 But this can cause really, really difficult bugs

 More about this in the Synchronization module

 😀 Economy

 Creating a thread is cheap

 Slightly cheaper than creating a process in MacOS/Linux

 Much cheaper than creating a process in Windows

 Context-switching between threads is cheaper than between processes

 So if you can do with threads what you can do with processes, then you likely

can do it a bit faster

 In old OSes (Solaris 4), threads were called “lightweight processes”

Threads vs. Processes
 😡 Less fault-tolerance

 If a thread fails/crashes, then the whole process fails/crashes, while
processes are independent of each other

 This motivates developers to use both processes and threads (see next slide)

 😡 Possibly more memory-constrained

 Since threads execute in the same process address space, and an OS can
bound the size of a process’ address space

 But that’s typically not a big deal (one can configure the OS if need be)

 The advantages here are well worth the drawbacks/limitations

 The main big drawback is “no memory protection” and we have developed

many, many approaches/solutions to deal with it

 See the Synchronization module

 Natural question: is concurrency with processes obsolete?

Concurrency with Processes?
 Should we still care about concurrency with processes?

 YES because many applications consists of multiple processes (which are

often multi-threaded)

 Well-known examples are some popular Web browser (Chrome, Firefox)!

 They calls fork() each time you open a tab

 Each tab is a (possibly heavily) multi-threaded process

 As a result, the code contains processes that do IPC because they don’t “see” the

same memory naturally

 But if a tab crashes (due to running bad JavaScript code, for instance) your browser

doesn’t crash!

 Google “firefox chrome processes threads” for instance :)

 In real-world settings you often have to put together different software
products to make up a whole system

 Some may just be executables instead of libraries with nice APIs

 So you have to create processes

 You interact with them via stdin/stdout/stderr streams for instance (see our

programming assignment) or via any supported IPC mechanisms

 Bottom-line: don’t drink the “I’ll only do threads, not processes” Kool-Aid

User vs. Kernel Threads
 Let’s now talk about how the OS implements threads

 Threads can be supported solely in User Space (User Threads)

 You can write your own thread implementation without help from the OS

 Often a homework assignment in a graduate OS course

 The main advantage of User Threads is low overhead

 e.g., because no system calls

 User Threads have several drawbacks:

 If one thread blocks, all other threads block

 All threads run on the same core (because the OS doesn’t know that

there are threads within a process)

 For these reasons User Threads are (no longer) heavily used

 All OSes today provide support for threads (Kernel Threads) that

can run on different cores and be truly independent of each other

 We typically just call them “threads”

Threads in Programming Languages

 C/C++: Pthreads

 C/C++: OpenMP (built on top of Pthreads)

 C++: std::thread

 Java: Java threads (implemented by the JVM, which relies on

Pthreads)

 Python: threading / multiprocessing packages

 WARNING: the threading package implements user threads!!

 Rust: std::thread

 JavaScript: no multithreading in the language, and it won’t change, but

there are options:

 Node.js provides worker_threads, but without memory sharing, a Worker

thread implementation

 There is a standard Web Worker API

 Let’s look at Java…

Java Threads

 Java makes is easy to use threads

 There is a Thread class

 There is a Runnable interface

 There is a Callable interface

 There is an ExecutorService interface

 Let’s see simple examples

Java Threads

 Java makes is easy to use threads

 There is a Thread class

 There is a Runnable interface

 There is a Callable interface

 There is an ExecutorService interface

 Let’s see simple examples of the first two

Extending the Thread class
 Extend the thread class

 Override the run() method with what the thread should do

 If you forget to override run(), your thread won’t do anything

 Call the start() method to start the thread

Thread subclass
public class MyThread extends Thread {

 MyThread(…) { … }

 @override

 public void run() { // code for what the thread should do }

}

Main program
public class MyProgram {

 public static void main(…) {

 MyThread myThread = new MyThread(…);

 myThread.start();

 // At this point, 2 threads are running!

 }

}

run() vs. start()

 You implement the thread’s code in run()

 You start the thread with start()

 WARNING: Calling run() does not create
a thread, but it works (it’s just a normal
method call)

 The start() method, which you should not
override, does all the thread launching

 It places whatever system calls are needed to start a
thread, e.g., clone()

 And then makes it so that the newly created thread’s
fetch-decode-execute cycle begins with the first line of
code of the run() method

The Runnable Interface
 Using the Runnable interface is preferred

because then you can still extend another class

 Java doesn’t have multiple inheritance

 Typically if you can use an implements

instead of an extends, you should

 So that you keep the extends option open for

another purpose

 Let’s see an example…

Using the Runnable Interface
Runnable class

public class MyRunnable implements Runnable {

 MyRunnable(…) { … }

 @override

 public void run() { // code for what the thread should do }

}

Main program

public class MyProgram {

 public static void main(…) {

 // Create an instance of the runnable class

 MyRunnable myRunnable = new MyRunnable(…);

 // Pass it to the Thread constructor

 Thread thread = new Thread(myRunnable);

 // Start the thread

 thread.start();

 // At this point, 2 threads are running!

 }

}

In-line Thread Creation

Main program

public class MyProgram {

 public static void main(…) {

 // Start an anonymous thread with a single statement

 new Thread(new Runnable() {

 @Override

 public void run() {

 …

 }

 }).start();

 }

}

 Sometimes it’s cumbersome to create all kinds of
Runnable classes, so one can inline everything

Printing 0’s Example
Runnable class

public class HelloWorldRunnable implements Runnable {

 private int index;

 public HelloWorldRunnable(int index) {

 this.index = index;

 } 
 @Override 
 public void run() {

 for (int i=0;i<10000;i++) {

 System.out.print(this.index);

 }

 }

}

public class MyProgram {

 public static void main(String[] args) {

 HelloWorldRunnable helloRunnable = new HelloWorldRunnable(0);

 Thread helloThread = new Thread (helloRunnable);

 helloThread.start();

 }

}

Printing 0’s Example
 The previous program runs as a Java process

 In fact as a thread inside the JVM process

 We call it the main thread

 When the main thread calls the start() method it creates
a new thread

 We now have two threads that are running:

 The main threads, who doesn’t do anything

 The newly created thread, who prints a bunch of 0’s to the terminal

 In Java, the program terminates only when all your threads
terminate (not true in all languages)

 The main thread terminates when it returns from main()

 All others terminate when they return from run()

 Let’s now have the main threads do something as well…

Printing 0’s and 1’s Example
Runnable class

public class HelloWorldRunnable implements Runnable {

 private int index;

 public HelloWorldRunnable(int index) {

 this.index = index;

 } 
 @Override 
 public void run() {

 for (int i=0;i<10000;i++) {

 System.out.print(this.index);

 }

 }

}

public class MyProgram {

 public static void main(String[] args) {

 HelloWorldRunnable helloRunnable = new HelloWorldRunnable(0);

 Thread helloThread = new Thread (helloRunnable);

 helloThread.start();

 for (int i=0;i<10000;i++) {

 System.out.print(1);

 }

 }

}

What to Expect?
 Now we have the main threads printing to the

terminal and the new thread printing to the
terminal

 What will the output be?

 Answer: Impossible to tell for sure

 If you know the details of the implementation of the
JVM on your host, and you know your OS and
hardware well, perhaps you can have some idea of
what it might look like

 ... but it’s not very useful because it will look different on
a different setup (it’s not portable)

 Let’s have a look at a few executions…

What to Expect?
 Now we have the main threads printing to the

terminal and the new thread printing to the terminal

 What will the output be?

 Answer: Impossible to tell for sure

 If you know the details of the implementation of the JVM
on your host, and you know your OS and hardware well,
perhaps you can have some idea of what it might look
like

 ... but it’s not very useful because it will look different on
a different setup (it’s not portable) and different each
time you run it

 Let’s have a look at a few executions…

Output Samples

 The execution is
non-deterministic

 Something
decides when a
thread runs
(JVM, OS)

 Deciding when a
thread runs is
called scheduling

Multi-Threaded Programming
 Major challenge: You cannot make any assumption

about thread scheduling, since the OS is in charge

 And what the OS does depend on the hardware and on

other running processes

 Major difficulty: You may not be able to reproduce a

bug because each execution is different!

 Makes it hard to debug!

 Worse: you may think your code is working, but that’s

because you haven’t been able to observe the bug yet…

 If you run your code 10,000 times and don’t see the bug,

you still cannot be sure that the bug will not happen

 But, someday, your users will 😱

Java/Kernel Threads
 The JVM is itself multi-threaded!

 The JVM has a thread scheduler for application threads,
which are mapped to kernel threads

 Several application threads could be mapped to the same kernel
thread (they are then “user threads”)

 That thread scheduler runs itself in a dedicated thread

 The OS is in charge of scheduling kernel threads

 But it also runs many threads itself (e.g., the garbage
collector)

 In a nutshell: Threads are everywhere

 Kernel threads that run application threads

 Kernel threads that do some work for the JVM

Influencing Threads?
 At this point, it seems that we throw a bunch of threads in, the OS “shakes the

bag”, and we don’t really know what happens

 To some extent this is true, but we have ways to influence what happens control

 In Java, a thread can call Thread.yield(), which says “I am willingly giving

up the CPU now”

 But it is still not deterministic!

 Programs should NEVER rely on yield() for correctness (it’s more a hint to the JVM,

and can help for interactivity)

 In Java, there is a Thread.setPriority() method

 Thread priorities are integers ranging between Thread.MIN PRIORITY and
Thread.MAX PRIORITY, the greater the integer, the higher the priority

 Again, these are hints and you can’t rely on them (and they don’t work at all on some
JVM implementations!!)

 All the above are basically “hints that may have some effect”, nothing more

 So they don’t really “solve” anything for certain

 Bottom Line: Orchestrating thread executions requires more advanced
features (stay tuned…)

Java Thread LifeCycle

NEW

RUNNABLE

WAITING

TERMINATED

start()

BLOCKEDTIMED_WAITING

These three states are reached when calling various methods

Java Thread LifeCycle

NEW

RUNNABLE

WAITING

TERMINATED

start()

BLOCKEDTIMED_WAITING

These three states are reached when calling various methods

This lifecycle is of course very
similar to the process lifecycle…

Flashback: Process LifeCycle

New

Running

Waiting

Terminated

Ready

NEW

RUNNABLE

WAITING

TERMINATED

BLOCKEDTIMED_WAITING

Java Threads OS Processes/Threads

Linux/MacOS Threads
 Processes and Threads are implemented as tasks

 Kernel data structure: task struct

 We already looked at it when we talked about processes

 The clone() syscall is used to create a task

 It can be invoked with several options, each set or not set

 Each option specifies something the child should share or not share

with its parent

 fork() just calls clone() with a particular set of options

 Preserved as a system call for backward compatibility to create processes

 From the man page: “if CLONE_VM is set, the calling process and the

child process run in the same memory space”

 To create a process, clone() is called without the CLONE_VM option

 To create a thread, clone() is called with, among other things, the

CLONE_VM option

Java Threads: the join() Method
 The join() method causes a thread to wait for

another thread’s termination
Example program

public class JoinExample {

 public static void main(String args[]) {

 // Create a thread

 Thread t = new Thread (new Runnable() {

 public void run() { . . . }});

 // Spawn it

 t.start();

 // Do some work myself

 . . .

 // Wait for the thread to finish

 try {

 t.join();

 } catch (InterruptedException e) {}

 }

}

 Useful to give work to do
to a thread

 This is our first example
of thread
“synchronization”

 Synchronization is a
generic word used to
denote ways in which one
can control the execution
of a group of threads

 We’ll talk more about this
in the Synchronization
module

Conclusion
 Multi-threading today is everywhere, in part due to us

having multi-core architectures

 Let’s do a ps axuM on my MacOS laptop and see how

many processes are multi-threaded…

 When I did this while back writing this slides I got 350

processes and 1157 threads. Almost all processes are
multithreaded, with up to 60+ threads for a process.

 In this course we focus more on how the OS implements
threads than how the user uses threads

 There are many, many more things we could talk about
regarding using threads and Java threads

 We’ll talk more about this in the Synchronization module

 ICS432 is all about that

