
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Virtual Machines
Containers
(A brief overview)

Objective

 Make sure you have a basic understanding of
Virtual Machines (VMs)

 Make sure you have a basic understanding of
containers

 They both have the same “run anywhere” goal:
replicate the functionality and behavior of one
system (the guest) on another system (the host)
 A “system” is hardware and/or software

 And yet, there are different
 Both useful in their own way
 Often used together

Virtual Machines (VMs)
 The software used to run guest VMs on a host is

called a hypervisor or virtual machine monitor
 It abstracts and allocates resources to VMs

 The hypervisor is to VMs what the OS is to processes:

OS

Process Process Process

Virtual Machine
Guest OS

Virtual Machine
Guest OS

Virtual Machine
Guest OS

Hypervisor

Hardware
Hardware

Hypervisor Type 1: Bare-Metal

This diagram showed
the hypervisor running
directly on the hardware

 Very efficient
 Used in enterprises,

not on personal
computers

 Examples: Hyper-V,
Xen, VMWare ESXi

Virtual Machine
Guest OS

Virtual Machine
Guest OS

Virtual Machine
Guest OS

Hypervisor

Hardware

Hypervisor Type 2: Hosted

This diagram shows the
hypervisor running on
the host OS

 Less efficient, but
easy to setup and
convenient

 Used on personal
computers

 Examples: VirtualBox,
VMWare Workstation,
Hyper-V, Parallels

Virtual Machine
Guest OS

Virtual Machine
Guest OS

Virtual Machine
Guest OS

Hypervisor

Host OS

Hardware

Virtualization / Emulation
 Everything is “easily virtualized” when the guest is for

the same computer architecture as the host
 e.g., an x86 VM running on an x86 host

 If this is not the case, then the hypervisor must use
emulation to “mimic the hardware”

 e.g., using QEMU on my Mac, which emulates a full system
and does automatic binary translation of machine
instructions of the guest architecture to the machine
instructions of the host architecture!

 Completely transparent to the user, but much slower
 You may have used emulators before (for game consoles?)

 These are really simulators in software of the guest machine (they
don’t do binary instruction translation)

Reasons to use VMs (1)
 Isolation / Sandboxing

 Running untrusted code, having untrusted users
 rm -rf / on the guest does not do anything harmful on the host

 Resource allocation
 The hypervisor can partition hardware resources (CPU, RAM,

etc.) among the VMs and limit each VMs resource allocation
 With hardware support from the CPU (Intel VT-x, AMD-V, etc.)

 This makes it possible to have better hardware resource
utilization, e.g., in cloud platforms

 A cloud can run 1,000 useful VMs on 200 physical hosts
 Because not all VMs need the full power of a host

 This avoids over provisioning the cloud with 1,000 physical
hosts, which would leave most of them unused

Reasons to use VMs (2)
 Convenient to use

 Easy to suspend/save/restore/shutdown a VM without losing
access to the host

 Convenient to distribute software
 Easy to send somebody a VM image for them to run a specific

system with all kinds of useful software pre-installed
 Avoids the: “Oh, you want to use my software? First, you need to

install a hundred dependencies…”

 Cross-platform testing/development
 Makes it very easy to test and develop code on all kinds of

system configurations
 You can run multiple VMs with an emulated network to mimic a

distributed system on a single host
 Great for kernel experimentation and development

Containers
 Containers are useful for some of the same reasons,

and at a very high level have the same goal: mimic a
system on another system
 Or the same system but with a bunch of useful software

already installed!
 They are often said to be “lighter than VMs”

 Faster to start / stop, less memory
 Often pretty ephemeral / disposable

 The key difference: the container defines the OS to
use but not the Kernel!
 Instead, it uses the Kernel of the host’s OS
 Therefore, there is no need to boot a container

Host OS (Kernel)

Containers

Container

Hardware

Container Container
Processes inside
containers all use
the same Kernel

If the container is
not compatible with
the host (different
OS, different
architecture), then it
transparently use
emulation or a VM
underneath!

Docker
 In this course many of you have used Docker

 The first highly popular container system
 A Docker image is described in a so-called Dockerfile

 Defines the CPU’s architecture family
 Defines the OS

 Can be for Linux or Windows
 Will run anywhere

 But perhaps using emulation and/or a VM, which slows things
down considerably (like for instance on my M1)

 Can inherit from another Dockerfile
 Specifies software installation, among other things

 Then Docker containers can be created for the image

Containers
 Containers allow to do some resource allocation and

partitioning, but not as much as VMs
 They also provide less isolation than VMs
 Often the two are used in combination:

Ubuntu Virtual Machine

CentOS Linux

Hardware

Windows Virtual Machine

Debian
Container

RedHat
Container

Windows
Container

Windows
Container

HyperVisor

Virtual machines are
used for 100%
isolation and
precise resource
allocation

Containers run
within each VM and
come with all kinds
of useful software

Containers
 Containers allow to do some resource allocation and

partitioning, but not as much as VMs
 They also provide less isolation than VMs
 Often the two are used in combination:

Ubuntu Virtual Machine

CentOS Linux

Hardware

Windows Virtual Machine

Debian
Container

RedHat
Container

Windows
Container

HyperVisor

Windows
Container

You can mix and
match anything!

Conclusion

Low overhead High overhead

H
ig

h
is

ol
at

io
n

Lo
w

is

ol
at

io
n

Processes

Containers

Virtual
Machines

 In almost all conceivable jobs you will have
after graduation you will use VMs and
containers
 Most of you are probably doing it now anyway

