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Objective

 Make sure you have a basic understanding of 
Virtual Machines (VMs)


 Make sure you have a basic understanding of 
containers


 They both have the same “run anywhere” goal: 
replicate the functionality and behavior of one 
system (the guest) on another system (the host)

 A “system” is hardware and/or software


 And yet, there are different

 Both useful in their own way

 Often used together



Virtual Machines (VMs)
 The software used to run guest VMs on a host is 

called a hypervisor or virtual machine monitor

 It abstracts and allocates resources to VMs


 The hypervisor is to VMs what the OS is to processes:
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Hypervisor Type 1: Bare-Metal

This diagram showed 
the hypervisor running 
directly on the hardware


 Very efficient

 Used in enterprises, 

not on personal 
computers


 Examples: Hyper-V, 
Xen, VMWare ESXi
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Hypervisor Type 2: Hosted

This diagram shows the 
hypervisor running on 
the host OS


 Less efficient, but 
easy to setup and 
convenient


 Used on personal 
computers


 Examples: VirtualBox, 
VMWare Workstation, 
Hyper-V, Parallels
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Virtualization / Emulation
 Everything is “easily virtualized” when the guest is for 

the same computer architecture as the host

 e.g., an x86 VM running on an x86 host


 If this is not the case, then the hypervisor must use 
emulation to “mimic the hardware”


 e.g., using QEMU on my Mac, which emulates a full system 
and does automatic binary translation of machine 
instructions of the guest architecture to the machine 
instructions of the host architecture!


 Completely transparent to the user, but much slower

 You may have used emulators before (for game consoles?)


 These are really simulators in software of the guest machine (they 
don’t do binary instruction translation)



Reasons to use VMs (1)
 Isolation / Sandboxing


 Running untrusted code, having untrusted users

 rm -rf /  on the guest does not do anything harmful on the host


 Resource allocation

 The hypervisor can partition hardware resources (CPU, RAM, 

etc.) among the VMs and limit each VMs resource allocation

 With hardware support from the CPU (Intel VT-x, AMD-V, etc.)


 This makes it possible to have better hardware resource 
utilization, e.g., in cloud platforms


 A cloud can run 1,000 useful VMs on 200 physical hosts

 Because not all VMs need the full power of a host


 This avoids over provisioning the cloud with 1,000 physical 
hosts, which would leave most of them unused



Reasons to use VMs (2)
 Convenient to use


 Easy to suspend/save/restore/shutdown a VM without losing 
access to the host


 Convenient to distribute software

 Easy to send somebody a VM image for them to run a specific 

system with all kinds of useful software pre-installed

 Avoids the: “Oh, you want to use my software? First, you need to 

install a hundred dependencies…”


 Cross-platform testing/development

 Makes it very easy to test and develop code on all kinds of 

system configurations

 You can run multiple VMs with an emulated network to mimic a 

distributed system on a single host

 Great for kernel experimentation and development



Containers
 Containers are useful for some of the same reasons, 

and at a very high level have the same goal: mimic a 
system on another system

 Or the same system but with a bunch of useful software 

already installed!

 They are often said to be “lighter than VMs”


 Faster to start / stop, less memory

 Often pretty ephemeral / disposable


 The key difference: the container defines the OS to 
use but not the Kernel!

 Instead, it uses the Kernel of the host’s OS

 Therefore, there is no need to boot a container
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Processes inside 
containers all use 
the same Kernel


If the container is 
not compatible with 
the host (different 
OS, different 
architecture), then it 
transparently use 
emulation or a VM 
underneath!



Docker
 In this course many of you have used Docker


 The first highly popular container system

 A Docker image is described in a so-called Dockerfile


 Defines the CPU’s architecture family

 Defines the OS


 Can be for Linux or Windows

 Will run anywhere


 But perhaps using emulation and/or a VM, which slows things 
down considerably (like for instance on my M1)


 Can inherit from another Dockerfile

 Specifies software installation, among other things 


 Then Docker containers can be created for the image



Containers
 Containers allow to do some resource allocation and 

partitioning, but not as much as VMs

 They also provide less isolation than VMs

 Often the two are used in combination:
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Virtual machines are 
used for 100% 
isolation and 
precise resource 
allocation


Containers run 
within each VM and 
come with all kinds 
of useful software



Containers
 Containers allow to do some resource allocation and 

partitioning, but not as much as VMs

 They also provide less isolation than VMs
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You can mix and 
match anything!



Conclusion
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 In almost all conceivable jobs you will have 
after graduation you will use VMs and 
containers

 Most of you are probably doing it now anyway


