
Henri Casanova (henric@hawaii.edu)

ICS332

Operating Systems

Virtual Machines

Containers

(A brief overview)

Objective

 Make sure you have a basic understanding of
Virtual Machines (VMs)

 Make sure you have a basic understanding of
containers

 They both have the same “run anywhere” goal:
replicate the functionality and behavior of one
system (the guest) on another system (the host)

 A “system” is hardware and/or software

 And yet, there are different

 Both useful in their own way

 Often used together

Virtual Machines (VMs)
 The software used to run guest VMs on a host is

called a hypervisor or virtual machine monitor

 It abstracts and allocates resources to VMs

 The hypervisor is to VMs what the OS is to processes:

OS

Process Process Process

Virtual Machine
Guest OS

Virtual Machine
Guest OS

Virtual Machine
Guest OS

Hypervisor

Hardware
Hardware

Hypervisor Type 1: Bare-Metal

This diagram showed
the hypervisor running
directly on the hardware

 Very efficient

 Used in enterprises,

not on personal
computers

 Examples: Hyper-V,
Xen, VMWare ESXi

Virtual Machine
Guest OS

Virtual Machine
Guest OS

Virtual Machine
Guest OS

Hypervisor

Hardware

Hypervisor Type 2: Hosted

This diagram shows the
hypervisor running on
the host OS

 Less efficient, but
easy to setup and
convenient

 Used on personal
computers

 Examples: VirtualBox,
VMWare Workstation,
Hyper-V, Parallels

Virtual Machine
Guest OS

Virtual Machine
Guest OS

Virtual Machine
Guest OS

Hypervisor

Host OS

Hardware

Virtualization / Emulation
 Everything is “easily virtualized” when the guest is for

the same computer architecture as the host

 e.g., an x86 VM running on an x86 host

 If this is not the case, then the hypervisor must use
emulation to “mimic the hardware”

 e.g., using QEMU on my Mac, which emulates a full system
and does automatic binary translation of machine
instructions of the guest architecture to the machine
instructions of the host architecture!

 Completely transparent to the user, but much slower

 You may have used emulators before (for game consoles?)

 These are really simulators in software of the guest machine (they
don’t do binary instruction translation)

Reasons to use VMs (1)
 Isolation / Sandboxing

 Running untrusted code, having untrusted users

 rm -rf / on the guest does not do anything harmful on the host

 Resource allocation

 The hypervisor can partition hardware resources (CPU, RAM,

etc.) among the VMs and limit each VMs resource allocation

 With hardware support from the CPU (Intel VT-x, AMD-V, etc.)

 This makes it possible to have better hardware resource
utilization, e.g., in cloud platforms

 A cloud can run 1,000 useful VMs on 200 physical hosts

 Because not all VMs need the full power of a host

 This avoids over provisioning the cloud with 1,000 physical
hosts, which would leave most of them unused

Reasons to use VMs (2)
 Convenient to use

 Easy to suspend/save/restore/shutdown a VM without losing
access to the host

 Convenient to distribute software

 Easy to send somebody a VM image for them to run a specific

system with all kinds of useful software pre-installed

 Avoids the: “Oh, you want to use my software? First, you need to

install a hundred dependencies…”

 Cross-platform testing/development

 Makes it very easy to test and develop code on all kinds of

system configurations

 You can run multiple VMs with an emulated network to mimic a

distributed system on a single host

 Great for kernel experimentation and development

Containers
 Containers are useful for some of the same reasons,

and at a very high level have the same goal: mimic a
system on another system

 Or the same system but with a bunch of useful software

already installed!

 They are often said to be “lighter than VMs”

 Faster to start / stop, less memory

 Often pretty ephemeral / disposable

 The key difference: the container defines the OS to
use but not the Kernel!

 Instead, it uses the Kernel of the host’s OS

 Therefore, there is no need to boot a container

Host OS (Kernel)

Containers

Container

Hardware

Container
 Container

Processes inside
containers all use
the same Kernel

If the container is
not compatible with
the host (different
OS, different
architecture), then it
transparently use
emulation or a VM
underneath!

Docker
 In this course many of you have used Docker

 The first highly popular container system

 A Docker image is described in a so-called Dockerfile

 Defines the CPU’s architecture family

 Defines the OS

 Can be for Linux or Windows

 Will run anywhere

 But perhaps using emulation and/or a VM, which slows things
down considerably (like for instance on my M1)

 Can inherit from another Dockerfile

 Specifies software installation, among other things

 Then Docker containers can be created for the image

Containers
 Containers allow to do some resource allocation and

partitioning, but not as much as VMs

 They also provide less isolation than VMs

 Often the two are used in combination:

Ubuntu Virtual Machine

CentOS Linux

Hardware

Windows Virtual Machine

Debian
Container

RedHat
Container

Windows

Container

Windows

Container

HyperVisor

Virtual machines are
used for 100%
isolation and
precise resource
allocation

Containers run
within each VM and
come with all kinds
of useful software

Containers
 Containers allow to do some resource allocation and

partitioning, but not as much as VMs

 They also provide less isolation than VMs

 Often the two are used in combination:

Ubuntu Virtual Machine

CentOS Linux

Hardware

Windows Virtual Machine

Debian
Container

RedHat
Container

Windows

Container

HyperVisor

Windows

Container

You can mix and
match anything!

Conclusion

Low overhead High overhead

H
ig

h

is

ol
at

io
n

Lo
w

is

ol
at

io
n

Processes

Containers

Virtual

Machines

 In almost all conceivable jobs you will have
after graduation you will use VMs and
containers

 Most of you are probably doing it now anyway

