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Demand Paging
 The way in which the OS allocates pages to a process is called 

Demand Paging  
 “Don’t load a page before the process references it”  

 Initially just load one page, the one with the first instruction of the program 
 Each time the program issues an address, load the corresponding page if 

not already loaded  
 This is a “lazy” scheme, as opposed to the “eager” scheme that 

would load all pages at once  
 For each page, the OS keeps track of whether it is in RAM or not 
 This is done using the valid bit of the page table entries  

 A page is marked as valid if it is legal and in memory 
 A page is marked as invalid if it is illegal or on disk 
 Initially all pages are marked invalid  

 During address translation, if the bit is invalid, a trap is generated: a 
page fault 



Demand Paging: Valid Bit Example
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Access Page 2: no page fault 
Access Page 3: page fault



Page Faults
 When the CPU issues an address, first one determines whether it’s 

potentially legal or not  
 i.e., does it correspond to a page number that’s not beyond the number of 

pages allowed for a process? 
 If it is illegal, then the process is aborted with some message  

 Lookup the valid bit in the page table entry 
 If the valid bit is set, do the address translation as usual 
 If not:  

 Find a free frame (from the list of free frames in the kernel) 
 Schedule the disk access to load the page into the frame 
 Kick the process off the CPU and put it the blocked/waiting state 
 Once the disk access is complete, update the process’ page table with the new 

logical/physical memory mapping 
 Update the valid bit 
 Put the process back into the Ready Queue (it should then run soon) 
 That process will rerun the instruction that caused the trap 



Rerun the “offending” instruction

 After a page fault is resolved and the OS has loaded the 
required page in RAM, one simply reruns the 
instruction from scratch (i.e., restart the fetch, 
decode, execute cycle at that instruction) 

 This is only possible because our instructions don’t 
modify more than one memory location  

 Which avoids a difficult “the instruction did half its work in 
RAM, but then page faulted, so when you restart it be careful 
that the first half of the work was already done” situation  

 In other terms, load/store ISAs are perfectly designed 
for page faults 



Virtual Memory Performance
 We know that loading from disk is very slow. What are the 

limits of this on-demand mechanism? Is it worth using?  
 Let tm be the memory access time (10ns to 200 ns; typically: 

70 ns), i.e., the time to access a byte in memory;  
 Let tp be the page fault time, i.e., the time required to load the 

page from the disk, place it in memory, and rerun the 
instruction. Typically: 5-50 ms (SSD: 3 to10 times faster)  

 How much faster is the memory compared to the disk? 

 Assume that tm = 10ns = 10−8 s and tp = 10ms = 10−2 s  
 Then tp / tm =10−2 / 10-8 = 106  
 The memory is 1 million time faster than the disk! 

 This is just one example, but regardless it’s orders of magnitude



Performance: Effective Access Time

 Consider a process that access memory n times. n0 of 
these times there is no page faults, and np of these times 
there is a page fault (n = n0 + np ). The total memory 
access time T is:  

                        T =n0 × tm +np × tp 
 The average access time for one memory access, t, is:  
           t = (n0 × tm + np × tp) / n = (1− np / n) × tm + (np / n) × tp 

 Let p = np / n  be the page fault probability, or page-fault 
rate  (0 ≤ p ≤ 1) 

 The average access time is then:  
                           t = (1 − p) tm + p tp 



Performance: Effective Access Time

 With the numbers given previously (rescaling to nanoseconds 
and assuming that p is small): 

                        t ~ 10 + 10,000,000 x p 
 Ideally (p = 0) there is no page fault and the access time 

would be 10 ns 
 Say we do not want a performance degradation of more than 

10% on average?  
 That means 10 + 10,000,000 x p < 11 
 This gives us: p < 10-7 = 0.00001% 

 This is absolutely tiny…. 
 If our page fault rate is 1%, then t = 10 + 10,000,000 x 0.01 ~ 

100,000ns 
 The memory would appear 10,000x slower!!!



Virtual Memory Performance

 Conclusion: The page fault rate must be kept as 
small as possible  

 What can be done?  
 Increase the memory size 
 Limit the size of the process address space 
 Tell programmers to develop programs with small 

address spaces ⇒ That’s your job! 
 Every time you use more RAM, you increase your page 

fault probability



Aside: fork()-exec()
 We have said that fork() makes a copy of the parent process 

address space to create an identical child process  
 But most of the time exec() is used in the child to run another 

program 

Some code
if (!fork()) { 
  exec(“/bin/ls”, …); 
}

 Making a copy of the parent’s address space is wasteful  
 The child address space is immediately overwritten with 

another (that of ”/bin/ls”) 
 So the copy is completely unecessary



Aside: Copy-on-Write

 Copy-on-Write: During a fork(), don’t copy the 
address space and initially share all pages  
 Save for some heap and stack pages, that are 

necessary for any new process  
 Whenever the parent or the child modifies a 

page, then copy it 

 This “lazy” scheme is used in all OSes 
(Windows, Mac, Linux)  

 In the fork-exec classical example, no page is 
copied! 



Page Replacement
 Virtual Memory increases multi-programming and provides 

the illusion of large address spaces 
 What if we run out of memory?  

 A page fault occurs 
 Oh no, the free-frame list is empty!!  

 We need to kick a page out of RAM  
 This is called page replacement 

 Evict a victim page from a frame (write it to the disk if necessary) 
 Put the newly needed page into that frame  

 Page replacement may thus require two page transfers  

 When the physical memory is full and all processes try to 
access it, everything just gets slooooow... 
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Dirty Bit
 In the previous example, why write T back to disk if it had not been 

modified?  
 Perhaps T contains read-only code or data 
 Or Process #2 just hasn’t had time to modify its bytes  

 No need to write a victim back to disk if that victim has never been 
modified  

 For this reason, each page table entry has a dirty bit 
 This dirty bit is initially set to 0 
 Whenever the process writes to the page, that dirty bit is set to 1 
 If a page is evicted, it’s written to disk only if its dirty  

 One speaks of “clean” and “dirty” pages  
 Most OSes do opportunistic un-dirtying: If the disk is idle pick a dirty 

page, write it out and clear its dirty bit 
 The more clean pages in RAM, the faster page-faults will be when RAM is 

full 



Conclusion
 At this point we have mechanisms 

 We can bring pages in from disk on demand (when page fault)  
 We can write pages to disk when needed (RAM is full) 
 The dirty bit is used to avoid doing redundant writes to disk  

 What we need are policies  
 The main questions are: Which pages do we kick back to 

disk? How many frames do we let a process have?  
 If we make good decisions we can lower the page-fault rate 
 The page-fault rate has to be super low (see the calculations a 

few slides back)  

 So it’s the usual story: first the mechanisms, and now the 
algorithms... 


