
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Virtual Memory and
Paging (3)

Demand Paging
 The way in which the OS allocates pages to a process is called

Demand Paging
 “Don’t load a page before the process references it”

 Initially just load one page, the one with the first instruction of the program
 Each time the program issues an address, load the corresponding page if

not already loaded
 This is a “lazy” scheme, as opposed to the “eager” scheme that

would load all pages at once
 For each page, the OS keeps track of whether it is in RAM or not
 This is done using the valid bit of the page table entries

 A page is marked as valid if it is legal and in memory
 A page is marked as invalid if it is illegal or on disk
 Initially all pages are marked invalid

 During address translation, if the bit is invalid, a trap is generated: a
page fault

Demand Paging: Valid Bit Example

A
B
C
D
E
F
G
H

0
1
2
3
4
5
6
7

Logical
Memory

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A

C

F

Physical
Memory

Disk

A B C
D FE
G H

Demand Paging: Valid Bit Example

A
B
C
D
E
F
G
H

0
1
2
3
4
5
6
7
Logical
Memory

4

6

9

0
1
2
3
4
5
6
7

Page
Table

✓

✓

✓
x
x

x
x

x
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A

C

F

Physical
Memory

Disk

A B C
D FE
G H

Demand Paging: Valid Bit Example

A
B
C
D
E
F
G
H

0
1
2
3
4
5
6
7
Logical
Memory

4

6

9

0
1
2
3
4
5
6
7

Page
Table

✓

✓

✓
x
x

x
x

x
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A

C

F

Physical
Memory

Disk

A B C
D FE
G H

Access Page 2: no page fault
Access Page 3: page fault

Page Faults
 When the CPU issues an address, first one determines whether it’s

potentially legal or not
 i.e., does it correspond to a page number that’s not beyond the number of

pages allowed for a process?
 If it is illegal, then the process is aborted with some message

 Lookup the valid bit in the page table entry
 If the valid bit is set, do the address translation as usual
 If not:

 Find a free frame (from the list of free frames in the kernel)
 Schedule the disk access to load the page into the frame
 Kick the process off the CPU and put it the blocked/waiting state
 Once the disk access is complete, update the process’ page table with the new

logical/physical memory mapping
 Update the valid bit
 Put the process back into the Ready Queue (it should then run soon)
 That process will rerun the instruction that caused the trap

Rerun the “offending” instruction

 After a page fault is resolved and the OS has loaded the
required page in RAM, one simply reruns the
instruction from scratch (i.e., restart the fetch,
decode, execute cycle at that instruction)

 This is only possible because our instructions don’t
modify more than one memory location

 Which avoids a difficult “the instruction did half its work in
RAM, but then page faulted, so when you restart it be careful
that the first half of the work was already done” situation

 In other terms, load/store ISAs are perfectly designed
for page faults

Virtual Memory Performance
 We know that loading from disk is very slow. What are the

limits of this on-demand mechanism? Is it worth using?
 Let tm be the memory access time (10ns to 200 ns; typically:

70 ns), i.e., the time to access a byte in memory;
 Let tp be the page fault time, i.e., the time required to load the

page from the disk, place it in memory, and rerun the
instruction. Typically: 5-50 ms (SSD: 3 to10 times faster)

 How much faster is the memory compared to the disk?

 Assume that tm = 10ns = 10−8 s and tp = 10ms = 10−2 s
 Then tp / tm =10−2 / 10-8 = 106
 The memory is 1 million time faster than the disk!

 This is just one example, but regardless it’s orders of magnitude

Performance: Effective Access Time

 Consider a process that access memory n times. n0 of
these times there is no page faults, and np of these times
there is a page fault (n = n0 + np). The total memory
access time T is:

 T =n0 × tm +np × tp
 The average access time for one memory access, t, is:
 t = (n0 × tm + np × tp) / n = (1− np / n) × tm + (np / n) × tp

 Let p = np / n be the page fault probability, or page-fault
rate (0 ≤ p ≤ 1)

 The average access time is then:
 t = (1 − p) tm + p tp

Performance: Effective Access Time

 With the numbers given previously (rescaling to nanoseconds
and assuming that p is small):

 t ~ 10 + 10,000,000 x p
 Ideally (p = 0) there is no page fault and the access time

would be 10 ns
 Say we do not want a performance degradation of more than

10% on average?
 That means 10 + 10,000,000 x p < 11
 This gives us: p < 10-7 = 0.00001%

 This is absolutely tiny….
 If our page fault rate is 1%, then t = 10 + 10,000,000 x 0.01 ~

100,000ns
 The memory would appear 10,000x slower!!!

Virtual Memory Performance

 Conclusion: The page fault rate must be kept as
small as possible

 What can be done?
 Increase the memory size
 Limit the size of the process address space
 Tell programmers to develop programs with small

address spaces ⇒ That’s your job!
 Every time you use more RAM, you increase your page

fault probability

Aside: fork()-exec()
 We have said that fork() makes a copy of the parent process

address space to create an identical child process
 But most of the time exec() is used in the child to run another

program

Some code
if (!fork()) {
 exec(“/bin/ls”, …);
}

 Making a copy of the parent’s address space is wasteful
 The child address space is immediately overwritten with

another (that of ”/bin/ls”)
 So the copy is completely unecessary

Aside: Copy-on-Write

 Copy-on-Write: During a fork(), don’t copy the
address space and initially share all pages
 Save for some heap and stack pages, that are

necessary for any new process
 Whenever the parent or the child modifies a

page, then copy it

 This “lazy” scheme is used in all OSes
(Windows, Mac, Linux)

 In the fork-exec classical example, no page is
copied!

Page Replacement
 Virtual Memory increases multi-programming and provides

the illusion of large address spaces
 What if we run out of memory?

 A page fault occurs
 Oh no, the free-frame list is empty!!

 We need to kick a page out of RAM
 This is called page replacement

 Evict a victim page from a frame (write it to the disk if necessary)
 Put the newly needed page into that frame

 Page replacement may thus require two page transfers

 When the physical memory is full and all processes try to
access it, everything just gets slooooow...

Page Replacement
A
B
C
D
E

0
1
2
3
4

Address Space
of Process #1

0
3

2

0
1
2
3
4
Page Table

of Process #1

✓

x

✓

✓
x

R
S
T
U

0
1
2
3

Address Space
of Process #2

6
1

4

0
1
2
3
Page Table

of Process #2

✓
✓

✓
5 ✓

0
1
2
3
4
5
6

U

R
Physical
Memory

T

B
D
S
A

Disk

A B C
D E
R S T
U

Process #1 needs to access Page 4 (E)
The kernel selects a victim frame

Page Replacement
A
B
C
D
E

0
1
2
3
4

Address Space
of Process #1

0
3

2

0
1
2
3
4
Page Table

of Process #2

✓

x

✓

✓
x

R
S
T
U

0
1
2
3

Address Space
of Process #2

6
1

4

0
1
2
3
Page Table

of Process #2

✓
✓

✓
5 ✓

0
1
2
3
4
5
6

U

R
Physical
Memory

T

B
D
S
A

Disk

A B C
D E
R S T
U

Process #1 needs to access Page 4 (E)
The kernel selects a victim frame
Say frame 5 (which happens to belong
to Process #2)

Page Replacement
A
B
C
D
E

0
1
2
3
4

Address Space
of Process #1

0
3

2

0
1
2
3
4
Page Table

of Process #2

✓

x

✓

✓
x

R
S
T
U

0
1
2
3

Address Space
of Process #2

6
1

4

0
1
2
3
Page Table

of Process #2

✓
✓

✓
5 ✓

0
1
2
3
4
5
6

U

R
Physical
Memory

T

B
D
S
A

Disk

A B C
D E
R S T
U

Process #1 needs to access Page 4 (E)
The victim is written to disk

Page Replacement
A
B
C
D
E

0
1
2
3
4

Address Space
of Process #1

0
3

2

0
1
2
3
4
Page Table

of Process #2

✓

x

✓

✓
x

R
S
T
U

0
1
2
3

Address Space
of Process #2

6
1

4

0
1
2
3
Page Table

of Process #2

✓
✓

✓
5

0
1
2
3
4
5
6

U

R
Physical
Memory

T

B
D
S
A

Disk

A B C
D E
R S T
U

Process #1 needs to access Page 4 (E)
The page table of Process #2 is
updated

x

Page Replacement
A
B
C
D
E

0
1
2
3
4

Address Space
of Process #1

0
3

2

0
1
2
3
4
Page Table

of Process #2

✓

x

✓

✓
x

R
S
T
U

0
1
2
3

Address Space
of Process #2

6
1

4

0
1
2
3
Page Table

of Process #2

✓
✓

✓
5

0
1
2
3
4
5
6

U

R
Physical
Memory

T

B
D
S
A

Disk

A B C
D E
R S T
U

Process #1 needs to access Page 4 (E)
The free-frame list is updated

x

Free Frames: {5}

Page Replacement
A
B
C
D
E

0
1
2
3
4

Address Space
of Process #1

0
3

2

0
1
2
3
4
Page Table

of Process #2

✓

x

✓

✓
x

R
S
T
U

0
1
2
3

Address Space
of Process #2

6
1

4

0
1
2
3
Page Table

of Process #2

✓
✓

✓
5

0
1
2
3
4
5
6

U

R
Physical
Memory

E

B
D
S
A

Disk

A B C
D E
R S T
U

Process #1 needs to access Page 4 (E)
The page is loaded into frame 5

x

Free Frames: {5}

Page Replacement
A
B
C
D
E

0
1
2
3
4

Address Space
of Process #1

0
3

2

0
1
2
3
4
Page Table

of Process #2

✓
✓

✓
x

R
S
T
U

0
1
2
3

Address Space
of Process #2

6
1

4

0
1
2
3
Page Table

of Process #2

✓
✓

✓
5

0
1
2
3
4
5
6

U

R
Physical
Memory

E

B
D
S
A

Disk

A B C
D E
R S T
U

Process #1 needs to access Page 4 (E)
Process #1’s Page Table is updated
Update the free-frame list

x

Free Frames: {}

✓5

Page Replacement
A
B
C
D
E

0
1
2
3
4

Address Space
of Process #1

0
3

2

0
1
2
3
4
Page Table

of Process #2

✓
✓

✓
x

R
S
T
U

0
1
2
3

Address Space
of Process #2

6
1

4

0
1
2
3
Page Table

of Process #2

✓
✓

✓
5

0
1
2
3
4
5
6

U

R
Physical
Memory

E

B
D
S
A

Disk

A B C
D E
R S T
U

All is well until the next page fault

x

Free Frames: {}

✓5

Dirty Bit
 In the previous example, why write T back to disk if it had not been

modified?
 Perhaps T contains read-only code or data
 Or Process #2 just hasn’t had time to modify its bytes

 No need to write a victim back to disk if that victim has never been
modified

 For this reason, each page table entry has a dirty bit
 This dirty bit is initially set to 0
 Whenever the process writes to the page, that dirty bit is set to 1
 If a page is evicted, it’s written to disk only if its dirty

 One speaks of “clean” and “dirty” pages
 Most OSes do opportunistic un-dirtying: If the disk is idle pick a dirty

page, write it out and clear its dirty bit
 The more clean pages in RAM, the faster page-faults will be when RAM is

full

Conclusion
 At this point we have mechanisms

 We can bring pages in from disk on demand (when page fault)
 We can write pages to disk when needed (RAM is full)
 The dirty bit is used to avoid doing redundant writes to disk

 What we need are policies
 The main questions are: Which pages do we kick back to

disk? How many frames do we let a process have?
 If we make good decisions we can lower the page-fault rate
 The page-fault rate has to be super low (see the calculations a

few slides back)

 So it’s the usual story: first the mechanisms, and now the
algorithms...

